SoK Papers in IEEE Conference on Secure and Trustworthy Machine Learning

SoK Authors · Frequently Asked Questions · Other Conferences with SoK

Other Venues: All · Oakland · Euro S&P · PETS · USENIX

2025
SoK: Fair Clustering: Critique, Caveats, and Future DirectionsJohn Dickerson, Seyed Esmaeili, Jamie Morgenstern, Claire Jie Zhang
SoK: Membership Inference Attacks on LLMs are Rushing Nowhere (and How to Fix It)Matthieu Meeus, Igor Shilov, Shubham Jain, Manuel Faysse, Marek Rei, Yves-Alexandre de Montjoye
SoK: On the Offensive Potential of AISaskia Laura Schröer, Giovanni Apruzzese, Soheil Human, Pavel Laskov, Hyrum S. Anderson, Edward W.N. Bernroider, Aurore Fass, Ben Nassi, Vera Rimmer, Fabio Roli, Samer Salam, Ashley Shen, Ali Sunyaev, Tim Wadhwa-Brown, Isabel Wagner, Gang Wang
SoK: What Makes Private Learning Unfair?Kai Yao, Marc Juarez
2024
SoK: A Review of Differentially Private Linear Models For High Dimensional DataAmol Khanna, Edward Raff, Nathan Inkawhich
SoK: AI Auditing: The Broken Bus on the Road to AI AccountabilityAbeba Birhane, Ryan Steed, Victor Ojewale, Briana Vecchione, Inioluwa Deborah Raji
SoK: Pitfalls in Evaluating Black-Box AttacksFnu Suya, Anshuman Suri, Tingwei Zhang, Jingtao Hong, Yuan Tian, David Evans
SoK: Unifying Corroborative and Contributive Attributions in Large Language ModelsTheodora Worledge, Judy Hanwen Shen, Nicole Meister, Caleb Winston, Carlos Guestrin
2023
SoK: A Validity Perspective on Evaluating the Justified Use of Data-driven Decision-making AlgorithmsAmanda Coston, Anna Kawakami, Haiyi Zhu, Ken Holstein, Hoda Heidari
SoK: Harnessing Prior Knowledge for Explainable Machine Learning: An OverviewKatharina Beckh, Sebastian Müller, Matthias Jakobs, Vanessa Toborek, Hanxiao Tan, Raphael Fischer, Pascal Welke, Sebastian Houben, Laura von Rueden
SoK: Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural NetworksTilman Rauker, Anson Ho, Stephen Casper, Dylan Hadfield-Menell