
SoK: “Plug & Pray” Today – Understanding USB
Insecurity in Versions 1 through C

Dave (Jing) Tian∗, Nolen Scaife∗, Deepak Kumar†, Michael Bailey†, Adam Bates†, Kevin R. B. Butler∗
∗University of Florida

{daveti, scaife, butler}@ufl.edu
†University of Illinois at Urbana-Champaign
{dkumar11, mdbailey, batesa}@illinois.edu

Abstract—USB-based attacks have increased in complexity in
recent years. Modern attacks now incorporate a wide range of
attack vectors, from social engineering to signal injection. To
address these challenges, the security community has responded
with a growing set of fragmented defenses. In this work,
we survey and categorize USB attacks and defenses, unifying
observations from both peer-reviewed research and industry.
Our systematization extracts offensive and defensive primitives
that operate across layers of communication within the USB
ecosystem. Based on our taxonomy, we discover that USB attacks
often abuse the trust-by-default nature of the ecosystem, and
transcend different layers within a software stack; none of
the existing defenses provide a complete solution, and solutions
expanding multiple layers are most effective. We then develop
the first formal verification of the recently released USB Type-
C Authentication specification, and uncover fundamental flaws
in the specification’s design. Based on the findings from our
systematization, we observe that while the spec has successfully
pinpointed an urgent need to solve the USB security problem, its
flaws render these goals unattainable. We conclude by outlining
future research directions to ensure a safer computing experience
with USB.

I. INTRODUCTION

Since its introduction in the 1990s, the Universal Serial
Bus (USB) protocol has increased in popularity as a means
of facilitating communication between peripheral devices and
hosts. New USB device features have paved the way for
widespread adoption in nearly every computing device [35].
The newest iteration of USB, Type-C, has strong support
from popular vendors—Type-C is now the exclusive means of
peripheral interaction with Apple MacBooks and new Google
smartphones [76].

Unfortunately, USB innovation has largely left security as
an afterthought. New specifications rarely mention security,
and until recently, USB designers placed the onus of security
onto the consumers and vendors of USB devices [123]. As a
result, USB devices are often a ripe target for attackers.

We begin this work with a systematic analysis of the attacks
present in the USB ecosystem. We find that many USB attacks
appear at varying communication layers, ranging from the
human layer (social engineering) down to the physical layer
(signal injection). In addition, all attacks abuse the trust-by-
default nature of the USB ecosystem.

In spite of the evolving USB threat landscape, defenses
against such attacks are fragmented and not widely adopted. In

systematizing the defenses present in the USB ecosystem, we
find that most defenses often focus on protecting a single layer,
which proves ineffective against a suite of attacks that appear
at many communication layers. In addition, misaligned goals
between industry and academia further fragment the defense
space. Commercial solutions focus on the prevention of data
loss and anti-malware without regard for emerging attack
vectors, while research prototypes vary and are hamstrung by
the lack of built-in security building blocks in the existing
USB specifications. As a result, research solutions often rely
on new host and peripheral architectures that are unlikely to
be incorporated into commercial systems.

After years of USB insecurity, the USB Implementers Fo-
rum (USB-IF) incorporated security features into the most re-
cent specification, USB Type-C. The new specification enables
Type-C authentication, which is intended to provide a way to
authenticate a USB device before interacting with it. However,
it is unclear whether authentication is sufficient to defend
against all existing attacks, and what can be done for legacy
devices that do not support the new spec. To investigate these
questions, we formally verify the USB Type-C authentication
protocol. Though the spirit of the specification highlights
long-awaited attention to security by USB designers, we
find multiple attacks that can break its underlying security
guarnatees. We argue that had the USB Type-C designers
learned from the attacks and defenses of the past, many
specification flaws could have been mitigated. We further
leverage our systematization to pinpoint what security issues
the new protocol addresses, and more importantly, where it
still fails.

We conclude with a discussion of future directions for USB
security, leveraging our taxonomy and systematization to focus
attention on the problems that remain. We hope our results
prove useful to the security community as we work towards a
safer USB computing ecosystem.

II. BACKGROUND

We first outline the evolution of the USB specification and
highlight key features that inform the present state of USB
security.



A. The Evolution of USB

Introduced in 1996, USB 1.0 [32] was designed to replace
disparate peripheral connecting interfaces and reduce the com-
plexity of both hardware design and software configuration.
USB 1.x [32], [33] features a polled bus, meaning that the USB
host controller initiates all data transfers. It provides two data
transfer rates, which are known as Low Speed (1.5 Mbit/s)
and Full Speed (12 Mbit/s). USB 1.x additionally provides
a limited amount of power over the cable for “bus-powered”
devices. The term “security” does not appear at all in the USB
1.x specification; the closest related topic is error detection in
the cable during transmission.

In 2000, the USB 2.0 protocol specification was released.
USB 2.0 provided increased peripheral support and a High
Speed (480 Mbit/s) data transfer rate. Peripheral support was
expanded to include digital cameras, video cards, CD writers,
and network adapters (in particular, 802.11 and Bluetooth).
USB 2.0 also paved the way for the popularity of “flash
drives”—portable devices that enabled physically transferring
data on the go. Like the 1.x specifications, the security of USB
devices is not stressed in the 650 page document. The lone
exception is the introduction of a new peripheral class called
Content Security [122], which attempts to provide limited
support for securing sensitive content, for example, readings
from fingerprint scanners.

USB 3.0 [54] was published in 2008, and offers a Super-
Speed (5 Gbit/s) data transfer rate. Like 2.0 before it, USB
3.0 offered expanded support for new classes of peripherals,
such as USB Vision [8] for controlling cameras and external
USB-based graphics processing [36]. USB 3.0 also replaced
the downstream traffic broadcast mechanism with a unicast
protocol, enabling internal routing within hubs. The 2013
release of USB 3.1 [55] brought about SuperSpeed+ (10
Gbit/s) as well as an updated USB Power Delivery (PD)
specification [124]. This specification, which supports up to
a 100W power supply over USB, paved the way for laptop
charging via USB. Unfortunately, security remained absent
from the 3.x specification. USB Type-C [53] was introduced
as a part of USB 3.1 as a new connector type, unifying PD,
USB 3.x, Thunderbolt, DisplayPort and HDMI using a 24-pin
connector/cable. In 2017, USB 3.2 [13] was released, doubling
the data transfer rate of previous generations (20 Gbit/s).

Throughout the evolution of the USB protocol, security
was rarely given consideration. As recently as 2014, the USB
Implementors Forum (USB-IF) explicitly stated that security
falls outside the scope of the USB specification. In an official
statement [123], the USB-IF asserted that security is not a
legitimate concern because “In order for a USB device to be
corrupted, the offender would need to have physical access to
the USB device.” They place the onus of security onto both
the consumers of USB products and the original equipment
manufacturers (OEMs), stating:

1) “OEMs decide whether or not to implement these
[security] capabilities in their products.”

2) “Consumers should always ensure their devices are

USB Device
Configuration 1

EP 0

Configuration 2
Interface 1 Interface 0

EP 0 EP 0 EP 0 EP 0 EP 0

EP 1 EP 1 EP 1 EP 1

EP n EP n

In In InOut Out Out

Interface 0

Figure 1: A USB device containing two configurations. Con-
figuration 1 contains two interfaces, and configuration 2 con-
tains one interface. Each interface supports two unidirectional
communication channels (In/Out) with the host machine. Each
channel may contain more than one endpoint (EP), which is
the sink of the communication.

from a trusted source and that only trusted sources
interact with their devices.”

By 2016, the USB-IF could not ignore security for much
longer. In response to the threat of rogue power chargers and
cables [18] enabled by the USB Type-C specification, the USB
3.0 Promoter Group and the USB-IF introduced the USB Type-
C Authentication specification [121] to Type-C products.

B. USB Protocol

The true flexibility of USB comes from composite devices,
which can contain multiple configurations and interfaces, each
of which is a standalone entity. For instance, a USB headset
may contain one configuration, which in turn contains four
interfaces, including a keyboard (for volume control), a micro-
phone, and two speakers. An example of a two-configuration
USB device is shown in Figure 1. Two mechanisms are
necessary to accomplish composite devices, one to define
different kinds of peripherals, and another to connect to them.

1) Common Class Specifications: Beginning in USB 1.0,
the notion of Common Class Specifications [111], [115] was
introduced to codify different kinds of peripherals. A USB
class is a grouping of one or more interfaces that combine to
provide more complex functionality. Examples of classes that
feature a single interface include the Human Interface Device
(HID) class that enables the USB host controller to interact
with keyboards and mice, and the USB Mass Storage Class
[126], [125] that defines how to transfer data between the host
and storage devices. A composite device can then combine
different classes to create a useful product, such as a USB
headset leveraging both the HID class and Audio class. As
we will see, the notion of designing USB peripherals through
a composition of multiple functionalities continues to affect
on the state of USB security today.

2) Device Enumeration: After a device is plugged into
the host machine, the USB host controller detects its
presence and speed by checking the voltage change on
data pins. Enumeration then begins (shown in Figure 2)
with the GetDeviceDescriptors command, whereby
the host asks the device for its identifying information in-

2



Host Device
GetDeviceDescriptors 

ResetDevice/AssignAddress 

GetConfigDescriptors 

GetInterfaceDescriptors 

Load Drivers 

USB Communications 

Figure 2: USB Enumeration Procedure.

DeviceHost

Bus 
Interface

Operating
System

Client

Bus 
Interface

Firmware

Function

Physical Layer

Transport Layer

Application Layer

Human Layer

Figure 3: USB vulnerabilities can be classified by the ab-
stracted communications layer at which they operated. A
successful attack involves violating an design assumption or
implementation error at a given layer.

cluding manufacturer, Vendor ID (VID), Product ID (PID),
and serial number. The host controller resets the device
and assigns an address to it for future communication. A
GetConfigDescriptors request obtains all configura-
tions available within the device. USB devices can have one
or more configurations, though only one may be active at a
time. Each configuration can include one or more interfaces,
which are obtained with the GetInterfaceDescriptors
request and represent the essential functional entities served
by different drivers within the operating system. Af-
ter GetInterfaceDescriptors completes, drivers are
loaded on behalf of the device and class-specific subsets of
the USB protocol (e.g., HID, Storage) begin operation.

III. UNDERSTANDING USB ATTACK VECTORS

In this section, we explore current attacks against USB.
Given the myriad work in this space, we first classify existing
attacks in terms of the functionality that they target. We
thus categorize USB functionality into abstract communication
layers. As seen in Figure 3, the layers represent the various
entities involved across both the host and peripherals. At the

highest level, the human layer involves actions and communi-
cations between human stakeholders. The application layer
represents user-level programs on the host and capabilities
on the device. The transport layer encompasses both device
firmware and host operating systems containing the USB stack.
Finally, the physical layer represents the communication over
the USB bus.

By grouping functionality into layers, we can more eas-
ily identify commonalities in approaches and derive sub-
groupings, called primitives. In the case of attacks, these prim-
itives encompass both the mechanism (i.e., how the attack is
accomplished) and the outcome (e.g., forgery, eavesdropping,
or denial of service). In the case of defenses, discussed in
Section IV, these primitives likewise encompass mechanism,
but instead highlight security guarantees (e.g., integrity, con-
fidentiality, or availability).

A. Abuse of Human Layer

Abuse at the human layer involves social engineering or
human error, as performed by outsiders as well as privileged
members within an organization.

1) Outsider Threats: USB attacks rely on plugging in
a peripheral in order to damage a host or compromise its
security, leading security practitioners to warn of the dangers
of inserting suspicious devices into computers. Social engi-
neering frequently involves tricking a user into plugging an
untrusted device into their machine and interacting with its
contents; in practice, this is not a challenging task. Stasiukonis
reports that in a 2006 penetration test, compromise of the
organization was made easy as 75% of USB drives scattered
near the workplace had been plugged into company computers
within three days [109]. The US Department of Homeland Se-
curity [91] replicated this result in a similar experiment where
60% of drives dropped found their way onto a government
computer; this number increased to 90% when drivers were
branded with a government logo, suggesting that users’ low
bar for electronic trust can be manipulated by attackers.

Wagenaar et al.’s 2011 “USB Baiting” experiment [129],
also demonstrated that users plugged in USB drives and
explored their reasons for doing so. Though one would expect
general security awareness to increase over the years, recent
work demonstrates empirically that users are still plugging in
the USB drives they find [119], [60]. Extending other exper-
iments, Tischer et al. planted appearance-modified drives to
instigate different human motivation, such as altruism or self-
interest. The researchers found 98% of drives were picked up
from the drop site and that files on 45% of drives were actually
opened. The ease of executing such attacks make USB-based
social engineering attacks both realistic and dangerous.

2) Insider Threats: The ease of use and rapidly declining
cost of USB storage devices enables both companies and
consumers to use them for storing and transferring sensitive
data. Like any physical device, they can be damaged, or worse,
lost, due to human error. Although not directly exploiting USB
vulnerabilities, such mishandling can often lead to detrimental
results. In 2011, Ponemon Institute released a study that

3



documented 400 different companies; they found that these
companies have lost more than $2.5 million per company
because of misplaced USB drives [75]. Later in 2011, an
Australian defense aide lost top secret documents stored on
a USB drive in transit through Kuwait [37]. Humans are error
prone, and even honest parties can make mistakes that can
heavily cost companies and even countries.

Edward Snowden used a USB drive, for which exit re-
strictions were lax, to siphon top-secret NSA data from his
Hawaii base [9]. Similarly, Reality Leigh Winner, another
NSA contractor, allegedly placed a USB drive into a classified
computer system [46] with the goal of exfiltrating sensitive
data, according to a court document [120]. These are only a
few cases that we as a security community know of—it is
possible and highly probable that USB storage has been used
to conduct similar attacks in many different scenarios.

The ubiquity and portability of USB devices are both a
challenge and an opportunity. On the one hand, their ease of
use greatly aids consumers and companies in day to day tasks.
On the other, USB devices are the currently de facto method
of bypassing technical and personal security precautions and
can lead to large, detrimental effects to organizations.

B. Abuse of Application Layer

Application layer attacks involve user-space processes on
the host and their interactions with the functionality of a
device. Attacks in this layer typically fall into two categories:
code injection attacks, where the attacker injects malicious
code into the host, and data exfiltration attacks, in which the
device accesses data from the host without authorization.

1) Code Injection: USB storage devices have been used
to inject malware to a host by several high-profile attacks.
Stuxnet [44], [31] allegedly attacked nuclear centrifuge equip-
ment in an airgapped environment; it propagated infection via
USB storage drives. Duqu [112] used a user-mode rootkit
to hide malicious files on the USB storage device. Con-
ficker [106], [45], [94] and Flame [134], [135], [130] used
zero-day exploits and malicious autorun.inf files to au-
tomatically execute malware when a storage device was con-
nected to the host. Although the auto-run feature was restricted
after it became one of the top threats for the Windows
platform [79], similar functionality remains available due to
bugs in the operating system [71].

2) Data Exfiltration: Since the USB device often does
not authenticate the communicating application on the host,
the device may send or receive sensitive data to or from an
unintended application. This is particularly problematic for
sensing devices that can be used to perform surveillance on an
unsuspecting user. For example, webcams have been leveraged
by both government agencies [87] and malware [28], [101] to
obtain information about the computer’s user and environment.
In the case of malware, the attackers can then demand a
ransom payment from the user. Web pages may request
that a vulnerable browser enable the microphone without the
user’s permission, allowing the site to capture audio from the
system [113]. Portnoff et al. found that less than half of people

noticed that their webcam indicator light illuminated during
computer-based tasks [95]. Attacks such as USBee [49], do
not provide any indicator visible to the user. USBee permits
the exfiltration of data from the host system by turning any
USB device connected with the machine into a RF transmitter.
Similarly, an exploit of the Linux resource manager [30]
allows arbitrary users to bypass system restrictions and access
any USB devices on the system.

C. Abuse of Transport Layer

Attacks on the USB transport layer fall into two general cat-
egories: those that perform masquerading through additional
interfaces and those that send maliciously crafted packets/mes-
sages to compromise the host operating system.

1) Protocol Masquerading: These devices provide addi-
tional, obscured interfaces to the host operating system, taking
advantage of the permissive trust model in USB whereby the
host host fully trusts any connected device. When a device
such as the Rubber Ducky [50], [51] or USBdriveby [65]
connects to the host system, all of its interfaces – some of
which are intentionally concealed from the user – are enumer-
ated. Hidden functionality can be implemented as additional
circuitry into an otherwise innocuous device such as a network
adapter in an audio headset. TURNIPSCHOOL [4], adoption
of NSA CottonMouth [5], [6] is a modified USB cable that
contains an RF transmitter in the plastic around the connector.
When the device is connected to a host, the transmitter is
enumerated along with the user’s expected interfaces. Soft-
ware running on the host can then exfiltrate data or receive
commands via the RF interface. Identifying and mitigating
these additional interfaces has traditionally been difficult as
an adversary can simply reprogram any USB descriptive data
(e.g., VID and PID) to evade device whitelisting or blacklisting
rules in the operating system. Furthermore, mitigation is
complicated by the legitimate use of composite devices such
as audio headsets with both input and output.

Devices do not have to be equipped with new hardware
components to be malicious. The lack of authentication for
firmware in USB devices allows attackers to overwrite the
firmware with malicious code [14]. Devices infected with
BadUSB [85], where attackers re-flash the firmware to add
more functionalities, for example, can present malicious inter-
faces as simple as a HID interface or as complex as a network
adapter on a USB thumb drive. iSeeYou [24] modifies a we-
bcam’s firmware to disable the indicator light. Psychson [27]
modifies the firmware of a USB storage device by adding
a keyboard functionality, which can run the malicious script
automatically. These attacks are invisible to the user and the
resulting modified device can be moved between hosts, leaving
a number of host machines exploited.

2) Protocol Corruption: The host’s USB software stack
generally expects devices to conform to the USB standard.
Fuzzing techniques using FaceDancer [47], [103], [63] and
debuggers [15] have led to the discovery of a number of
kernel-mode arbitrary code execution vulnerabilities, e.g., in
the Windows USB drivers [1], [2], [3], FreeBSD [23], Linux

4



kernel USB subsystem [10], [99], [20], and other operating
systems [38]. In 2017, the syzkaller syscall fuzzer also found
more than 40 bugs in Linux kernel USB drivers [48]. In some
cases, exploitation of these vulnerabilities can occur during the
host’s device enumeration, making the physical connection of
the device the only barrier to compromise. Man-in-the-middle
devices such as embedded systems running USBProxy [41]
can manipulate legitimate protocol traffic from devices to
inject malicious content.

D. Abuse of Physical Layer

Physical layer attacks consist of attacks against confidential-
ity and integrity in the communication across the USB bus.
In this context, signal refers to activities that occur over the
USB bus.

1) Signal Eavesdropping: In signal eavesdropping attacks,
sensitive data is recovered through physical observation of
messages moving between the host and peripheral. Keyloggers
are miniature, inconspicuous shim devices that are placed
between the host port and peripheral to record keystroke
packets, e.g., KeyGrabber [67]. In Shah et al.’s JitterBug [104],
a single trip keylogging attack that exfiltrates keystrokes
from the target over a timing-based network side channel.
Neugschwandtner et al. demonstrate that, prior to USB 3.0, a
malicious peripheral can eavesdrop on the downstream traffic
of all connected devices [82]. USB snooping [110] attacks
leverage current leakage on the power line of the USB bus
to infer the USB data traffic. There have also been in-the-
wild appearances of malicious USB peripherals and cables that
use network connectivity to eavesdrop and exfiltrate sensitive
messages, such as CottonMouth [5], [6] and GPS locator [77],
[11]. Of particular concern is that many hosts contain internal
USB hubs which are often reprogrammable [84], allowing
for a persistent bus eavesdropping compromise via firmware
rewriting regardless of BIOS or UEFI integrity defenses.

A variety of fingerprinting attacks have also been demon-
strated in which low layer messages are shown to leak signifi-
cant information about host characteristics. Wang and Stavrou
demonstrate that USB Request Blocks leak information about
the host operating system [132], which can be used by a
malicious smartphone to compose a targeted malware payload.
Davis observes that variations in the implementation of USB
enumeration can be used to identify the operating system,
e.g., Windows 8 is the only common operating system to
issue 3 GetConfiguration descriptor requests [39]. A
more resilient approach to host fingerprinting relies on timing
side channels (e.g., inter-packet gaps) to infer host machine
characteristics. Letaw et al. [72] employ a USB protocol
analyzer [43] to extract timing features of bus states and use
machine learning classification to infer the operating system
of the host. Bates et al. present a timing-based fingerprinting
scheme that can be launched from a commodity smart phone.
They show that specific operating system versions and model
numbers can be inferred with upwards of 90% accuracy,
that inter-packet gaps can be used by devices to detect
the presence of virtualized environments [16]. While timing-

based fingerprinting significantly raises the bar for evasion, it
seems likely that resource-rich hosts could modify their timing
characteristics to evade detection, although this has not been
demonstrated in the literature. Besides timing, power analysis
and EM side-channel [108], [89] are also used, e.g., to extract
secret information from USB devices.

2) Signal Injection: Analog signals are used to convey sen-
sitive data, leaking information to the outside of the machine,
where an adversary is able to receive the signal, decode it,
and recover the sensitive data. Unlike USB bus eavesdropping
mentioned above, USBee [49] does not require any specific
devices or cables to leak the data from the host machine.
Instead, it uses connected USB devices as an RF transmitter
to emit electromagnetic emissions that encode sensitive data,
by “injecting” the data into USB devices available on the bus.
Where there is no “victim” RF transmitter available on the
laptop, the adversary can touch the exposed metal part of the
machine with a plain wire.

The ability to inject analog power has also been used to
cause physical damage to the host machine. USB Killer (and
USB Kill 2.0) [127] embeds a number of capacitors on the
two sides of the PCB board of the USB key. Once connected
with the host machine, USB Killer draws the power from the
host USB bus, charging the capacitors. Once fully charged, a
negative 200VDC is discharged over the USB data lines of the
host machine. This charge/discharge cycle keeps going until
the USB Killer is removed or the host machine is damaged. In
newer releases of USB Power Delivery and Type-C connector
standards, device are able to draw and transmit so much power,
e.g., up to 100W, that they can irreparably damage the host.
The use of poor quality USB Type-C cables have already led
to circumstances that inadvertently resemble this attack. For
example, a cable has damaged a Pixel book and two USB
PD analyzers, because the GND and Vbus were mis-wired
between a Type-A plug and a Type-C plug [18].

USB ATTACK VECTOR SUMMARY

Based on this examination of attacks, we identify several
offensive primitives that are leveraged in USB-based attacks.
Note that we exclude DMA attacks from USB devices, which
are an example of I/O attacks against host machines and
peer devices [100], [136]. Table I provides a mapping of
notable attacks surveyed above to their respective layers and
primitives. We report the following findings:
F1. Trust by Default: Across all communications layers,
a common characteristic of attacks is that they abuse the
trust-by-default assumption that pervades the USB ecosystem.
This trust model is inextricably linked to the “Plug & Play”
philosophy that led to USB’s ubiquity, making popular the
notion that peripherals should work instantly upon connection
without any additional configuration. Violations at the human
layer are the result of misplaced trust in the intentions of
devices and other humans. Within the application layer, host
machines blindly trust the integrity of the contents of portable
media and devices assume that all transactions emanate from
a trustworthy agent. At the transport layer, USB protocols

5



Layer Offensive Primitive Attack

Human Layer Outsider Threats Social Engineering USB [109], U.S. Government [91], USB Attack Vector [60], Users Really Do [119]
Insider Threats Ponemon Study [75], Australian Defense Loss [37], Manning Infiltration [68], Snowden Documents [9]

Application Layer Code Injection Brain [56], Stuxnet [31], Conficker [106], Flame [134], User-mode rootkit [112]
Data Extraction Webcam Extraction [87], [28], Audio Extraction [113], USBee [49], TURNIPSCHOOL [4]

Transport Layer Protocol Masquerading Rubber Ducky [50], USBdriveby [65], TURNIPSCHOOL [4], USB Bypassing Tool [14], BadUSB [85], iSeeYou [24]
Protocol Corruption FaceDancer [47], Syzkaller [48]

Physical Layer
Signal Eavesdropping Smart Phone USB Connectivity [132], USB Stack Interaction Intelligence [39], Power/EM Side-channels [108], [89], BadUSB Hubs [84],

USB Fingerprinting [72], [16], USB Eavesdropping [82], USB Snoop [110], CottonMouth [5], [6], USB GPS locator [77], [11]
Signal Injection USBKiller [127], Cable Quality [18], USBee [49], TURNIPSCHOOL [4]

Table I: Notable real-world attacks on the peripheral ecosystem, grouped by the layer at which they operate and the offensive
primitive of which they are an instance.

assume that kernel drivers will only be requested for legitimate
purposes. Finally, at the physical layer, USB host controllers
supporting the USB 1.x and 2.x protocols broadcast messages
downstream assuming that they would only be read by the
recipient.

Unfortunately, trust-by-default is not strictly a legacy prob-
lem. As recently as late 2014, the USB-IF stated that “con-
sumers should always ensure their devices are from a trusted
source and that only trusted source interact with their de-
vices” [123]. The assertion that the consumer is responsible for
the integrity of the USB interaction is problematic; consumers
have no means of establishing the identity or provenance of a
device, making it impossible to determine if it originates from
a trusted chain of custody.
F2. Attacks Transcend Layers: Attacks that exploit hosts
or exfiltrate data from them appear to demonstrate correct
operation to the layer they are communicating with. For
example, attacks such as USBee allow the passing of messages
that look for all intents and purposes like legitimate traffic, or
at least traffic that is allowable within the USB standard, while
the actual exfiltration is a physical layer activity based on RF
or GSM emanations. Similarly, attacks such as BadUSB and
TURNIPSCHOOL do not subvert the USB protocol itself, but
rather exploit its inherent openness to augment functionality
that users would not think to look for. The consequence of this
is that solutions that simply consider one particular segment
of USB activity without adopting a more holistic approach to
the entire USB stack will be incomplete and susceptible to
cross-layer attacks.

IV. SECURING USB

Defenses are organized based on the layer that attacks target,
not on the layer of the system that they modify to provide
the defense. For example, on-device encryption is a low-
layer solution to defending against a human-layer problem
(data loss). In some cases, individual systems feature defen-
sive mechanisms for multiple operational layers; we discuss
these in multiple subsections below. As mentioned earlier,
the derived defensive primitives describe both the mechanism
employed as well as the security properties guaranteed.

A. Defense of Human Layer

For defenses targeting the human layer, we divide solutions
into those that impact the capabilities of human stakeholders,
mechanisms that operate on the device (such as encryption and

authentication), and auditing mechanisms either on the host or
the device itself.

1) Security Training: Perhaps the most difficult challenge
to USB-based attacks is mitigating attempts to “hack the
human.” A necessary first step to prevent peripheral attacks
in security-sensitive organizations is extensive and frequent
security training. In 2012, NIST set out standards for using
portable devices including USB [131], and these standards
are also making their way into many organizations’ security
education programs. Increasingly, employees are made aware
of the dangers of social engineering [7]. After security training
sessions, lessons are commonly reinforced through mounting
informational security posters around the workplace that warn
of social engineering tactics, e.g., [29]. Still, in a survey done
by CompTIA, 45% of employees have received no corporate
security training whatsoever [34]. To make matters worse,
empirical evaluation has shown that security training is not
a panacea for security illiteracy [70], [105], and anecdotal
evidence indicates that skilled social engineers are capable of
assuaging the reservations of their targets even after security
training [42].

2) On-Device Data Encryption: Encrypted USB devices
(e.g., IronKey [59] and Kanguru [66]) provide data confiden-
tiality through on-device encryption and user authentication,
and employ tamper-resistant hardware to prevent physical
extraction of data or keys. By encrypting data stored on
removable media, these devices prevent the loss of data
through physical theft of the device. While relatively costly in
comparison to standard USB storage devices, these have seen
considerable industry adoption, at the price of complicated
device enrolling and key management processes. Even when
encrypted, however, on-device encryption can not prevent
data loss due to insider attacks. Diwan et al. [40] achieve
functionally equivalent properties to on-device encryption by
instrumenting the Windows USB subsystem to perform on-the-
fly encryption of outbound I/O request packets. This approach
requires invasive modifications to the host operating system
and lacks the portability of secure flash drives, but can prevent
data exfiltration via USB as hosts outside of the organizational
boundary will be unable to read the device.

3) On-Device Host Authentication: In response to emerging
peripheral attack vectors, recent proposals have sought to bind
device functionality to particular machines rather than specific
users. The Kells system [25] extends USB enumeration to
support host identification via trusted hardware. Kells assumes

6



the presence of a TPM on the host as well as a custom TPM
daemon, and introduces a custom smart USB device. Follow-
ing the end of standard enumeration, a full TPM attestation
is performed over the USB interface using Acceptance Device
Specific Command (ADSC). If the device successfully verifies
the host TPM’s quote result then all partitions are mounted,
otherwise only a public partition is mounted. This approach to
host identification is also used in the ProvUSB system [117].
Host-identifying smart devices can therefore prevent data loss
due to both device theft and insider attacks, as in either case
the attacker will be unable to access the data partition on an
unauthorized host. However, these systems require a number
of extensions to the standard connectivity model including
modifications to both the host and the device, trusted hardware,
and a security policy for whitelisting host access.1

4) Host- or Device-Based Auditing: In the absence of a
foolproof method for securing the human layer, a viable alter-
native is auditing peripheral usage. Auditing provides system
administrators an opportunity to reason about how peripherals
are being used within the organization, e.g., allowing them to
monitor the flow of data via flash storage drives in much the
same way that network monitoring software grants the ability
to track data entering and exiting the organization over the In-
ternet. Techniques have been demonstrated to recover evidence
of portable media usage from the host in spite of the anti-
forensic properties of USB flash drives [22], [74], although
these approaches are susceptible to false evidence presented
by malicious peripherals [97]. Extending the host operating
system with provenance-based auditing capabilities [17], [64]
has been shown to be useful when attempting to identify the
root cause of data exfiltration attacks. By recording when data
is written to a storage device, data provenance can narrow
the list of suspects if sensitive data is discovered in a public
forum. The ProvUSB system permits fine-grained audit data
to be collected on board [117].

5) Physically Disabling of Functionality: One extreme way
of defenses is to prevent users from using USB devices by
physically disabling USB ports. When the USB functionality
is implemented as an extended PCI card, admins can remove
the card from the motherboard. For USB ports within the
motherboard, IT managers can glue them [83]. A less brutal
solution is USB condom [58], which sits between a host
machine and a USB device. It shuts down all USB data traffic,
and only provides basic charging functionality. Note that we
will not include these defenses in our further discussion, since
they break the basic usage for USB.

B. Defense of Application Layer

Defenses targeting attacks at the application layer focus
primarily on the host, and include modifications to the OS
and its drivers.

1 From the device side, TCG also proposed to embed TPMs inside periph-
erals [78], such as leveraging TPM to implement trusted SCSI commands
for storage devices. OPAL [114] finalized how a storage device provide
authorization and data encryption by leveraging the trusted platform from
within the target system. Note that OPAL does not require a TPM inside the
storage device.

1) System Hardening: Host systems can be hardened
through enabling safer default behaviors. Pham et al. [92]
inspect Windows OS families and reconfigure the system to
disable auto-run-like functionality and block the execution of
unsigned executables or drivers carried on portable media.
Antivirus software can also be used to prevent application
layer attacks over USB storage. Composite anti-virus sys-
tems such as Metascan [88] and OLEA [86] not only offer
standard malware scans for host machines, but also sell
scanning kiosks in which sacrificial VMs are used to ensure
containment of any malware. These kiosks are commonly
deployed near the entrances of security-sensitive organizations
to prevent infected peripherals from entering the facility. The
Windows Embedded platform [80], TMSUI [133] and USB
Unix Smart Blocker [40] attempt to mediate USB connectivity
for Windows CE, Industrial Control and GNU/Linux Systems
respectively, but all base their device recognition mechanism
on potentially unreliable information reported by the device
during enumeration. USBFILTER [116] instruments the upper
layers of the USB stack, modifying device drivers in order to
identify the processes interactive with the device. USBFILTER
can thereby pin devices to specific process ID’s, creating
a novel defense against application-layer attacks in which
malware eavesdrops on USB device traffic to obtain sensitive
information (e.g., keystrokes, webcam images).

2) Driver-Based Access Controls: Treating USB drivers as
“capabilities”, GoodUSB [116] attempts to constrain malicious
peripherals through incorporating elements of user-driven ac-
cess control [98] for driver loading. Prior to the completion of
enumeration, GoodUSB reports the device’s claimed identity
to the user via a pop-up notification. Based on the user’s
expectations of device functionality, GoodUSB then permits
all or some of the requested driver’s to be loaded on behalf
of the device; for example, when the user expects a peripheral
to be a flash drive, the peripheral will not be able to request
the Human Interface Device driver during enumeration. Be-
cause authorization is based on requested behaviors instead
of reported identity, GoodUSB cannot be circumvented by a
malicious device, thus defeating BadUSB attacks. However, it
cannot prevent peripherals from making malicious use of their
natural drivers (e.g., a malicious keyboard injects keystrokes).

3) Device-Emulating Honeypots: Various strains of ad-
vanced malware are now known to attempt to propagate to
and from hosts and storage devices. Frequently, the malware
will wait for a peripheral connection and then attempt to
propagate to the other end of the connection shortly thereafter.
As a result, honeypots have been demonstrated to be an
effective means of detecting the presence of an infection. Host-
emulating honeypots such as Ghost can detect the propagation
of malicious USB storage payloads [93], by emulating a
storage device that periodically connects to potentially infected
machines. If the host initiates any file I/O with the emulated
device, this is likely evidence of malicious activity, since
under benign circumstances the host will not interact with the
dummy device after SCSI scanning.

7



Layer Defensive Primitive Defense

Human Layer

Security Education NIST Standards [131], Education Materials [7]
On-Device Data Encryption IronKey [59], Kanguru [66]
On-Device Host Authentication Kells [25], ProvUSB [117]
Host- or Device-Based Auditing System Provenance [17], Transient Provenance [64], ProvUSB [117]

Application Layer
System Hardening Disabling Autorun [92], Metascan [88], OLEA [86], WindowsCE [80], TMSUI [133], Smart Blocker [40], USBFILTER [118]
Device-Emulating Honeypots Ghost [93]
Driver-Based Access Controls GoodUSB [116]

Transport Layer

Firmware Verification IronKey [57], FirmUSB [52], VIPER [73]
USB Stack Fuzzing USB Fuzzing [81], [128], Hardware-based Fuzzing [61], vUSBf [102], Syzkaller [48], POTUS [90]
USB Packet Firewall USBFILTER [118], USBFirewall [62]
Host-Emulating Honeypots GoodUSB [116], Cinch [12]

Physical Layer Anti Fingerprinting USB Host Fingerprinting [16]
Secure Channel Cinch [12], UscramBle [82]

Table II: Proposed defenses for the peripheral ecosystem, grouped by the layer at which they defend and the primitive of which
they are an instance. Note that many solutions employ multiple defensive primitives.

C. Defense of Transport Layer
Defenses against attacks in the transport layer are broken

down by firmware verification, USB stack fuzzing, USB
packet firewall, and host-emulating honeypots.

1) Firmware Verification: Secure USB devices such as
IronKey purport to prevent BadUSB attacks [57] by using
signed firmware, provided that the device manufacturer is
trusted and the signing key is kept safe. While signed firmware
is a sound practice, the introduction of a trusted third party
expands the attack surface of the system. When the device
firmware is accessible, e.g., via Device Firmware Update
(DFU), FirmUSB [52] applies symbolic execution to find
hidden and malicious functionalities inside the firmware. How-
ever, firmware is often not available, even in binary format. In
attestation-based approaches, the host verifies the correctness
of device firmware by establishing tight timing bounds on
its response to a series of challenges. VIPER [73] presents
a software-based timed challenge-response protocol for veri-
fying peripheral firmware over the system bus that precludes
the possibility of proxy attacks by leveraging the asymmetry of
the latencies from CPU-to-peripheral and from peripheral-to-
proxy. In spite of the known difficulty of performing software-
based attestation on embedded devices [26], this approach
requires manufacturer support since the device firmware needs
to support the attestation.

2) USB Stack Fuzzing: USB fuzzing has long been incorpo-
rated into security consultants’ threat assessments [81], [128].
Jodiet et al. present a mutation-based USB fuzzing approach
that is conducted on hardware using a PCI evaluation board
and the Linux USB Gadget API [61]. Schumilo et al. present
a QEMU-based, parallizable virtual USB fuzzer (vUSBf) that
makes use of USB redirection to inject arbitrary noise into dif-
ferent GetDescriptor requests [102]. Leveraging KCOV
feature within the Linux kernel and QEMU, Syzkaller [48]
is a coverage-guided syscall fuzzer that has found bugs in
the USB subsystem. POTUS [90] combines fault injection,
fuzzing, and symbolic execution to detect bugs in USB kernel
drivers. While fuzzing can improve the code quality and raise
the bar for attackers, it cannot defend against attacks abusing
the USB protocol itself, such as BadUSB attacks.

3) USB Packet Firewall: As network firewalls are a pow-
erful primitive for minimizing the potential actions of would-
be attackers on the Internet, firewall-driven protocol access

controls for USB peripherals intuitively provide similar pro-
tections. Tian et al. present USBFILTER/usbtables [118], a
netfilter/iptables-like stack for filtering USB traffic. Where
iptables enforces rules by pattern matching over IP addresses
and port numbers, usbtables can pattern matches USB buses
and ports, among other fields; these correspond to physical
locations on the host machine that cannot be spoofed by
a malicious peripheral. USBFILTER can then apply rules
that constrain permissible protocol activities in much the
same way as GoodUSB. USBFirewall [62] is another USB
packet firewall implementation upon FreeBSD. Unlike US-
BFILTER, USBFirewall focuses on protecting the host USB
stack by detecting malformed USB packets, e.g., generated by
FaceDancer, based on a formal model of the protocol syntax.

4) Host-Emulating Honeypots: In contrast with device hon-
eypots, which can only detect malware propagating from
a host to portable storage, emulating the host machine al-
lows detection of malicious peripheral activity at both the
application and transport layers. To examine a suspicious
device, GoodUSB [116] redirects it to a QEMU-KVM virtual
machine using USB pass-through. The VM completes the
USB enumeration and then monitors the device for evidence
of malicious activity. The Cinch system [12] also leverages
virtualization to decrease the host’s attack surface – the host
operating system is hoisted into a VM to isolate it from the
USB host controller, and then all USB traffic is tunneled
via IOMMU through a sacrificial gateway VM. Within the
sacrificial VM, a variety of the application and transport layer
defense techniques can be deployed including signature-based
antivirus, protocol compliance, and user-driven access control.
While host honeypots are able to detect both application
and transport layer attacks, the VM dependency and device
operation interruption make them impractical for normal users.

D. Defense of Physical Layer

Solutions for physical layer attacks have received only
limited consideration within the literature. Defenses against
physical layer attacks consider anti-fingerprinting as well as
implementing confidential communication over the USB bus.

1) Anti-Fingerprinting: The most straightforward way to
mitigate inferences from fingerprinting attacks is to further
randomize the USB stack behavior in hardware and soft-
ware. A technique for defeating message-based fingerprinting

8



demonstrated in [16] introduces additional GetDescriptor
requests to confuse the attacker; generalized, this result
demonstrates that uniform appearance and ordering of control
transfers during USB enumeration will make distinguishing
between operating system families more difficult. Timing
randomization can also potentially defeat timing-based finger-
printing. As a host/device can arbitrarily speed up or slow
down USB transfers, it could confuse would-be attackers
by varying its timing characteristics. However, as the USB
spec imposes requirements regarding message ordering and
timing, extreme behavior randomization may break the normal
operation of the device.

2) Secure Channel: To defend against USB bus eaves-
dropping, Cinch [12] considers adapting encryption and au-
thentication schemes to the physical peripheral connections.
A Cinch gateway is used as an encryption and decryption
proxy on the host side, and a small crypto adapter (similar
to a keylogger) to act as the peripheral’s encryption and
decryption proxy. As a result, a malicious USB bus or other
USB devices would only have access to encrypted traffic
and could not produce authenticated messages. Similarly, the
UScramBle [82] system defends against eavesdropping of
downstream traffic by instructing the host to negotiating an
encryption key with the device during USB enumeration.

SECURING USB SUMMARY

Based on this survey, we identify several defensive primi-
tives that are leveraged in USB security solutions. Table II pro-
vides a mapping of notable defenses to the layer and primitive
to which they correspond. Further, we evaluate USB attacks
and defenses using these primitives in Table III. We define a
complete defense as a solution designed to defend against a
certain attack completely. A partial defense means a solution
works in general but does not provide a complete mitigation.
Reliable detection refers to mechanisms designed to detect a
certain attack with low false positive rate. Partial detection
means mechanisms only work in certain circumstances. Note
that even a complete defense or a reliable detection may not
be 100% perfect, and still works under certain assumptions.
They may also become partial solutions in the future as new
attacks emerge.

For example, on-device host authentication can detect in-
sider attacks, provided the provenance mechanism is able to
record each I/O operation, and is not disabled or bypassed.
This also assumes an enterprise environment where only
IT certified USB devices, such as ProvUSB, can be used.
Firmware verification can help mitigate attacks against the
transport layer, by detecting malformed packets, and hid-
den/malicious functionalities from within the firmware. The
host can then deploy corresponding defenses using, e.g.,
USBFILTER. Host-emulating honeypots can also detect code
injection and transport layer attacks reliably, provided the
malicious USB device is not able to detect such an em-
ulation environment. Note that normal data exfiltration via
USB storage can also be detected by the honeypots, except
side/covert-channel attacks, such as USBee. Device-emulating

honeypots can detect data exfiltration by detecting potential
data transfers from malicious processes within the host. From
the above taxonomy of defenses and comparative evaluation,
the following findings can be drawn.

F3. Trust Anchors represent a Design Tradeoff: The intrin-
sic flaw enabling all offensive primitives covered by our analy-
sis was the misguided trust-by-default property underlying the
USB ecosystem – both the host and the device are assumed
to be benign and expose all functionality to one another after
enumeration. It is therefore not surprising that the majority of
viable defensive primitives require the introduction of a trust
anchor in order to enable their security properties. Smart de-
vice prototypes such as Kells [25] and ProvUSB [117] propose
the use of host-side trusted hardware for authentication, while
commercial solutions like IronKey [59] verify user-presented
credentials. One notable consequence of the trust placement
design tradeoff is that the placement of the trust anchor (host
vs. device) informs the directionality of the defense. Smart
devices seeking to defend themselves from malicious actors on
the host leverage host-side trusted hardware prior to granting
access. Host machines, in turn, anchor trust in the intrinsic
physical properties of USB device firmware in order to defend
against malicious peripherals. Based on this observation, it
is clear that a complete solution to USB security will likely
require trust anchors on both the host and device sides.

F4. Single-Layer Solutions Are Not Effective: An emerging
trend [12], [118], [62] in the recent literature is that threats
in the USB peripheral space can be understood through the
lens of network security – by presenting peripherals to the
host as untrusted network endpoints, the host will be able
to defend itself from attack. The primary examples of this
primitive are USBFILTER [118] and USBFirewall [62]. As
shown in Table III, this primitive is proven to be the most
powerful solution, covering attacks across different layers.
Similar to the firewall primitive, host-emulating honeypots
such as GoodUSB [116] and Cinch [12] also expand their
defense into different layers. The power of these solutions is
rooted in the fact that they are a composition of protection
mechanisms within different layers that provide different op-
erational semantics. Based on our analysis of the USB defense
space, we conclude that a complete solution must be able to
centralize context from all operational layers prior to issuing
security decisions.

F5. Defenses for Signal Injection Are Still Missing: As
shown in Table III, there is still no defense primitives avail-
able to defend against signal injection attacks based on our
analysis. These attacks usually leverage the intrinsic nature
of hardware as side channels to emit analog signal, such as
USBee [49], or require hardware changes for power attacks,
such as USBKiller [127]. It is natural to see why software-
based solutions could not mitigate these attacks. While USB
hardware design improvement is the right direction in the long
run, we still need a mechanism to establish trust with USB
devices before fully enabling them in the short term.

9



O
ut

isd
er

Th
re

at
s

In
sid

er
Th

re
at

s

Co
de

In
je

ct
io

n

D
at

a
Ex

tra
ct

io
n

Pr
ot

oc
ol

M
as

qu
er

ad
in

g

Pr
ot

oc
ol

Co
rru

pt
io

n

Si
gn

al
In

je
ct

io
n

Si
gn

al
Ea

ve
sd

ro
pp

in
g

Human Layer Application Layer Transport Layer Physical Layer

Security Training G# G# – – – – – –
On-Device Data Encryption G# – – – – – – –
On-Device Host Authentication G# 2 – – – – – –
Host- or Device-Based Auditing – 2 2 2 – – – –

System Hardening – – G# G# – – – –
Driver-Layer Access Controls – – G# G# G# – – –
Device-Emulating Honeypots – – – 2 – – – –

Firmware Verification – – – – G# G# – –
USB Stack Fuzzing – – – – – G# – –
USB Packet Firewall – – G# G#   – –
Host-Emulating Honeypots – – � 2 � � – –

Anti Fingerprinting – – – – – – – G#
Secure Channel – – – – – – –  

Type-C Authentication – – 2 – – 2 G# –

Table III: Comparative evaluation of defensive primitives for securing the USB stack. Columns represent offensive primitives
as organized by the communications layer. Defensive primitives are marked with  if they provide a complete defense, G# if
they provide a partial defense, � if they can reliably detect that an attack has taken place, and 2 if they provide detection
under limited conditions.

Host Device
Digest Query 

GetDigest 

Certificate Read 
GetCertificate

Authentication Challenge 
Challenge

Figure 4: The USB Type-C Authentication Protocol.

V. IS USB TYPE-C THE ANSWER?

Although the reserach community has proposed many dif-
ferent solutions for addressing weaknesses in USB security,
none have reached widespread commercial adoption. In this
section, we evaluate the industry’s proposed solution, USB
Type-C Authentication [121]. Type-C Authentication (TCA)
is the first attempt by the USB 3.0 Promoter Group and
USB-IF to address issues related to security. However, the
security properties of TCA are not yet widely understood
by the security community.2 We begin with a description of
the features and assumptions of TCA. Then, using the Type-
C Authentication revision 1.0 specification (released on Feb
2, 2017), we formally model and verify the protocol using
ProVerif [21], demonstrate multiple attacks, and discuss other
issues within the spec. We finally evaluate TCA using findings

2At the time of writing, the only commercial products supporting TCA are
software from Siliconch [107] and a USB PD controller from Renesas [96].

ReqHeader Nonce

ResHeader

slot#

slot# Others CertChain
Hash Salt Context

Hash Sig

Figure 5: The USB Type-C Authentication challenge (request)
and response messages with payloads.

we have learned through the systematization, and show that
TCA is on the right direction to solve USB security in general,
but the design flaws and the ignorance of modern USB attacks
render its efforts in vain.

A. TCA Description

1) USB Certificate Authorities: The TCA protocol is built
over a certificate authority (CA) hierarchy, mimicking the
current CA model used by SSL/TLS. The USB-IF owns and
operates a default self-signed root certificate, and permits
other organizations to use their own root certificates. The
specification places no requirements on third-party roots (e.g.,
organizational vetting or issuance processes). USB device
manufacturers control intermediate certificates signed by the
USB-IF, and devices are issued their own certificates by the
manufacturers. The final USB product is capable of storing
at most 8 certificate chains and associated private keys, each
with separate roots.

2) Authentication Protocol: In this protocol, the initiator is
the USB host controller and the responder is the USB device.
The protocol defines three operations the initiator can perform,
shown in Figure 4:
Digest Query: In this operation, the host controller issues
a GetDigest request to the device. The device responds
with digests for all of its certificate chains. According to the
specification, the intent of this operation is to accelerate the

10



certificate verification process in cases where the certificate
chain has already been cached and verified.
Certificate Read: This operation allows the host to retrieve
a specific certificate chain using the GetCertificate
request.
Challenge: As shown in Figure 5, this operation defines
a challenge-response protocol where the host initiates by
sending a Challenge request. The request contains a slot
identifier in the request header and a 32-byte nonce. The
response echoes the same slot identifier in the response header
and contains a 32-byte SHA256 hash of the chosen certificate
chain, a 32-byte salt, a 32-byte SHA256 hash of all USB
descriptors for USB devices and all zeros for PD devices, and
a 64-byte ECDSA digital signature on the challenge message
and the response message using the corresponding private key
of the device.

3) Secure Key Storage and Processing: To protect certifi-
cate private keys, a non-volatile secure enclave is needed,
shown in Figure 6. As discussed above, this storage is
partitioned into 8 slots supporting 8 private keys. Similarly,
the certificate chain region also has 8 slots, containing the
corresponding certificate chain if there is a private key in
the associated slot. The TCA specification does not specify
whether certificate chains should also be secured.

To support the authentication protocol, a hardware crypto-
graphic engine supporting ECDSA is also required. Presum-
ably, this should be the only component which can access
the secure storage. Other hardware components, besides the
basic MCU, may be needed for both security and performance
reasons, including TRNG and SHA256.

4) Security Policy: Following device authentication, the
TCA specification suggests the introduction of a policy mech-
anism for peripheral management. The specification explains
that “Policy defines the behavior of Products. It defines the ca-
pabilities a Product advertises, its Authentication requirements,
and resource availability with respect to unauthenticated Prod-
ucts” (Page 14, Section 1.4) and “USB Type-C Authentication
allows an organization to set and enforce a Policy with regard
to acceptable Products.” (Page 11, Section 1). Unfortunately,
beyond this description a concrete definition for policy is not
provided; all implementation details are left to the OEM.

B. Formal Verification

To discover possible vulnerabilities in the design, in this sec-
tion we formally verify the TCA protocol using ProVerif [21],
which has been applied on Signal [69] and TLS 1.3 Draft [19].
ProVerif uses the concept of channels to model an untrusted
communication environment (e.g., the Internet) where adver-
saries may attack the protocol. However, because the USB
communication channel does not provide confidentiality by
default and is trusted in most cases,3 we instead model
the device firmware as our channel. This accurately models
attacks such as BadUSB [85], where the attacker is either a
malicious USB device or a non-root hub trying to spoof the

3We do not consider side-channel or hardware attacks against the USB bus.

Firmware

Certificate Chains

Private Keys

slot0

slot1

slot7

slot0

slot1

slot7

C
onfig

MCU

EC
DSA

SH
A256

TRN
G

Figure 6: USB device internal architecture with secure storage
and hardware to support Type-C Authentication.

authentication protocol. In ProVerif, we define this firmware
channel as free fw:channel.

We also need to define the security properties we wish to
prove. For example, since the private keys inside USB devices
should never be leaked, we seek to understand if attackers
can learn the key from eavesdropping or participating in the
protocol. The Type-C authentication spec clearly states (Page
11, Section 1.2) that “it permits assurance that a Product is

1) Of a particular type from a particular manufacturer with
particular characteristics

2) Owned and controlled by a particular organization”.
This means the authentication protocol should guarantee both
the original configuration and the true identity of the device.
The original configuration should be the one designed by the
vendor for this product (e.g., a webcam). The true identity
combines the usage of certificate chains (tying to a particular
organization) and private keys baked into the device to provide
the ability to cryptographically verify the original configura-
tion. We abstract these security goals in ProVerif:
free slot_key:pri_key [private].
free slot_cert_chain:cert_chain.
free orig_conf:usbpd_config.
query attacker(slot_key).
query d:usbpd; event(goodAuth(d, true)) ==>

event(useConfig(d, orig_conf)).
query d:usbpd; event(goodAuth(d, true)) ==>

(event(useCert(d, slot_cert_chain)) &&
event(usePrivkey(d, slot_key))).

To simplify the abstraction, we model one private key and
the corresponding certificate chain rather than implementing
all 8 slots. We also make the following assumptions:

• We ignore the verification process for a certificate chain,
which is critical to the security of the entire protocol but
out of the scope of the protocol.

• We assume the verification process to be successful by
default.

Our modeling is based on the communication between the
USB host and the USB device. PD products share the same
procedure via different signaling mappings. To mimic the
caching behavior involved in the protocol, we use a “table”
in the host side, supporting reading and writing a certifi-
cate chain: table cert_chain_cache(cert_chain,
digest).

11



C. Results

Unsurprisingly, attackers cannot obtain the private key in-
side the USB device by protocol messages alone since none
of these messages are designed to transmit the key. However,
this protocol fails to meet its goals; neither the original
configuration nor the true identity of the device could be
guaranteed even if the authentication protocol succeeds, due
to certificate chain caching inside the USB host:
get cert_chain_cache(chain, =dig) in known_device(config)

else new_device(config).

Since the certificate chains are not secret, a malicious device
can compute the digest of the expected chain. This digest
can be sent as a response to the GetDigest request and
impersonate the legitimate device. Unless the configuration of
the legitimate device is saved and compared with the current
configuration by the host, a malicious device can claim any
functionality it wants. Thus, the certificate chain cache is
vulnerable to spoofing attacks.

We then remove the certificate chain cache from the host,
forcing every device to go through a complete certificate
request. Again, the private key is secure. Unfortunately, the
authentication can still be spoofed as shown in this attacking
trace:
attacker(sign((non_1883,hash(chain_1877),sal_d_1881,

config_d_1879),prik_1876)).

To exploit this vulnerability, the attacker hardcodes a certificate
chain and a private key in the firmware rather than using the
ones in the slot and modifies the original configuration (e.g.,
by adding a malicious HID functionality). This means that
without firmware verification to prevent BadUSB attacks,
these also allow circumventing the TCA protocol, rendering
it useless for its stated goals.

To demonstrate how firmware verification corrects this
issue, we then assume firmware is trusted (e.g., signed by
the vendor and verified by the MCU before flashing). We
model this in ProVerif by marking the firmware channel as
private: free fw:channel [private]. We assume that
valid, legitimate firmware will use the certificate chains and
private keys inside the slots during authentication and that the
original configuration of the device does not contain malicious
functionality.

Using this model, ProVerif confirms that successful authen-
tication guarantees both the original configuration and the true
identity of the device:
RESULT event(goodAuth(d,true)) ==>

(event(useCert(d,slot_cert_chain[])) &&
event(usePrivkey(d,slot_key[]))) is true.

RESULT event(goodAuth(d_2076,true)) ==>
event(useConfig(d_2076,orig_conf[])) is true.

RESULT not attacker(slot_key[]) is true.

These results show that correct authentication using the
TCA protocol is possible only when the firmware is verified.

D. Other Issues

While our formal verification of the authentication protocol
uncovered major flaws, our manual analysis of the TCA

specification uncovered other serious and systemic design
flaws. These flaws reflect both a lack of understanding of
secure protocol design and a lack of awareness to the present
state of threats to peripheral devices. Responsibility for solving
the most difficult security challenges raised by Type-C, such
as a USB Certificate Authority system or a rich language
for expressing security policies, is delegated wholesale to the
OEMs. As a result, we are left to conclude that Type-C is
based on an intrinsically broken design. Below, we catalog
these issues:

1) No Binding for Identification with Functionality: In
addition to the VID, PID, and serial number of the device,
a device’s leaf certificate also carries Additional Certificate
Data (ACD). ACD contains physical characteristics of PD
products (e.g., peak current and voltage regulation) but no
functionality (interface) information for other USB prod-
ucts.4 One explanation is that the protocol was designed to
address low-quality Type-C cables that were damaging host
machines [18] but was later extended to support other USB
products. For PD, the specification clearly states that it does
not consider alternative modes. As a result, a successful
authentication does not specify the device’s original con-
figuration (e.g., storage device, keyboard, normal charging
cable).

2) Volatile Context Hash: As shown in Figure 5, the chal-
lenge response contains the context hash, which is all zeros
for PD products but a SHA256 hash of all descriptors for
USB products. This seems intended to solve the function-
ality binding issue for USB products mentioned above but
is broken when the firmware is not trusted. However, the
firmware can provide its own set of USB descriptors and
feed them into the hardware ECDSA signing module to
generate the challenge response, as shown in Figure 6. As
a result, BadUSB attacks are still possible.

3) Unidirectional Authentication: For PD products, either
a PD sink or a PD source can initiate an authentication
challenge. The authentication between PD devices is thus
mutual. However, the TCA specification only allows USB
host controllers to initiate an authentication challenge for
USB devices. This is unfortunate, as our survey of defen-
sive solutions demonstrates that host authentication is an
essential feature for device self-protection. As a result, the
TCA specification does not provide a way for smart devices
such as mobile phones to make informed trust decisions.

4) Nebulous Policy Component: Following device authen-
tication, the TCA specification calls for the creation of a
security policy to handle different connected products, but
does not adequately describe what a policy is or how to
create one. The specification does not define the security
policy language, encoding, installation method, or how it
interacts with the USB host controller. Policies are only
described anecdotally, indicating a lack of forethought as
to how TCA policy can appreciably enhance security.

4 Note that using a self-signed root certificate from the vendor itself may
not solve the problem, especially when the vendor is not trusted.

12



Finding TCA Strength TCA Weakness
F1. Trust by Default CA model & Certificates 1. Certificate chain cache; 2. Firmware implementation; 3. No support for legacy devices

F2. Attacks Transcend Layers N/A 1. Dependence on nebulous “Policy”
F3. Trust Anchors As Design Tradeoff Private keys 1. Unidirectional authentication; 2. Key protection requirement; 3. No revocation

F4. Single-Layer Solutions Are Not Effective N/A 1. Dependence on nebulous “Policy”
F5. Defenses for Signal Injection Are Missing Charging profiles 1. No binding for identification with functionality; 2. Volatile context hash

Table IV: TCA evaluation using findings based on our systematization – While TCA has successfully pinpointed some urgent
needs to solve the USB security problem, the design flaws and limitations render its goals in vain.

5) Impractical Key Protection Requirement: The private
keys in the slots are the most important property a prod-
uct needs to protect besides the firmware. Although the
specification does not detail how to secure private keys, it
does list more than 10 attacks a product needs to defend
against from leaking keys, including side-channel attacks,
power analysis, micro-probing, etc. It is unlikely that a $10
USB product [96] could stop advanced invasive attacks,
e.g., using Focused Ion Beam (Appendix C, TCA Spec),
which makes certificate revocation critical when a private
key is leaked.

6) No Revocation: The specification states that the validity
time of a product certificate is ignored, suggesting that once
the certificate is loaded onto the device, there is no way to
revoke it. The use of certificate chain caching to accelerate
the authentication process is also based on the fact that all
certificates along a chain stay legitimate forever once the
chain is verified.

7) No Support for Legacy Products: With the help of
converters, Type-C can be fully compatible with legacy
USB devices, and leaves it to the end user to set a security
policy that blacklists devices that cannot participate in the
authentication protocol. As breaking backwards compat-
ibility is in direct conflict with the USB’s core design
principle of universality, very few organizations will elect
to set such a policy. As a result, TCA is likely to be trivially
bypassed by applying a converter to a Type-C device.

We map TCA as a new defense primitive against all attack
primitives in Table III, which shows the limitation of TCA
as a complete USB security solution. Not surprisingly, TCA
works best for signal injection attacks since it was designed
to solve the problem of low-quality charging cables. All other
limited defense effects are the results of trusting the identity
and the firmware once the device passes the authentication
protocols, and assuming some security policies deployed on
the host machines using the identity of the device.

We then evaluate TCA using all the findings based on our
systematization, as shown in Table IV. One one hand, TCA
is aware of some urgent issues in USB security, taking initial
steps to fix them. For example, TCA introduces certificates and
a CA model, providing a way to build trust for USB products,
and embeds private keys into USB products to provide trust
anchors. However, as we show in the TCA weakness column,
the design flaws and limitations makes TCA a vulnerable and
incomplete solution for USB security.

VI. FUTURE DIRECTIONS

Through systematization, we have demonstrated that a
complete solution requires a system that composes multiple
defensive primitives across different communication layers.
Although flawed, TCA is a promising start, since authenti-
cation is a necessary prerequisite to providing further security
guarantees. We sketch several future research thrusts covering
our findings that can aid in solving the USB security problem.
• Solution Integration. Because most existing USB defense

solutions focus on a single layer, it is natural to investi-
gate how to combine different solutions covering multiple
layers. For instance, combining ProvUSB, GoodUSB, and
FirmUSB provides a comprehensive defense from Human
to Transport Layer, defeating most software-based attacks.
Similarly, USBFirewall can act in combination with USB-
FILTER to provide a powerful USB packet firewall for con-
trolling USB device behavior while defending against ex-
ploits from malformed packets. These combined approaches
will simultaneously address our findings F2 and F4.

• Type-C Authentication Products Evaluation While we
have shown design flaws of TCA, it is unlikely that we
will see a new version of the specfication in the near future,
given that the it has just been finalized. There is therefore an
urgent need to evaluate the security of these new products,
since real-world attacks may provide the impetus for a
specification update. It is also possible that vendor-specific
implementations have considered those pitfalls in the spec
and have offered mitigations which, once verified, will prove
convincing. This will address our findings F1 and F5.

• Bi-directional Authentication and Mutual Authentica-
tion. While the trust anchor for USB hosts is missing in
TCA, a short-term fix is to leverage the trusted hardware
available on the host, such as TPM, and implement a
host authentication protocol like Kells and ProvUSB. The
possibility of doing bidirectional authentication also opens
a door to mutual authentication, where the USB host and
peripheral authenticate each other. Together with clear key
protection and revocation requirements, this may provide a
comprehensive solution to finding F3.

• Legacy Device Authentication. To authenticate legacy de-
vices, two techniques are promising, and solve the problem
in different ways. USB host fingerprinting has shown the
possibility of fingerprinting host machines via the USB
interface using machine learning algorithms. The same idea
could be applied to USB device fingerprinting, although with
the pitfalls of building a robust machine learning system
in an adversarial environment. FirmUSB is able to under-

13



stand the USB device firmware behavior, and providing
a stronger security guarantee than fingerprinting when the
firmware is available. This combination of fingerprinting and
firmware verification can potentially mitigate most attacks
from legacy devices. Together with TCA, this will provide
a reasonable solution addressing finding F1.

• Policy Instantiation. Although security policies have been
designed and used in existing solutions such as USBFILTER
and Cinch, we need a new policy design that is general
enough to be adopted by most vendors and expressive
enough to ease creating rich rules. The new design should
enumerate a set of subject, object, and access primitives to
provide an intuitive mediation abstraction, define a common
data marshaling format (e.g., XML, JSON) through which
policies can be shared between deployments. It should also
describe best practices for policy design, including how
policies can preserve security in the presence of legacy
devices. This will not only concretize TCA with regards
to findings F2 and F4, but also promote USB security as
part of systems security solutions, such as SELinux.

VII. CONCLUSION

USB, after three generations and a recent connector change,
remains woefully problematic. In this work, we present a
structured methodology for reasoning about the nature of USB
attacks and defenses. In so doing, we discover that these vul-
nerabilities harken back to the core trust-by-default principle
of the USB specification, and identify design tradeoffs and
principles that inform the properties of proposed defensive
solutions. Finally, we formally verify the new USB Type-C
Authentication specification, and uncover design flaws and
implementation pitfalls. We conclude with future research
directions. It is our intent that this systematization will guide
future research efforts and ultimately improve the security of
USB ecosystem.

ACKNOWLEDGEMENT

This work is supported in part by the US National Sci-
ence Foundation under grant numbers CNS-1540217, CNS-
1564140, CNS-1657534, CNS-1505790, and CNS-1518741,
and by the Department of Energy under award DE-
OE0000780.

REFERENCES

[1] CVE-2013-1285: Windows USB Descriptor Vulnerability. http://www.
cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1285.

[2] CVE-2013-1286: Windows USB Descriptor Vulnerability. http://www.
cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1286.

[3] CVE-2013-1287: Windows USB Descriptor Vulnerability. http://www.
cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1287.

[4] TURNIPSCHOOL - NSA playset. http://www.nsaplayset.org/
turnipschool.

[5] COTTONMOUTH-I. https://nsa.gov1.info/dni/nsa-ant-catalog/usb/
index.html#COTTONMOUTH-I, 2008.

[6] COTTONMOUTH-II. https://nsa.gov1.info/dni/nsa-ant-catalog/usb/
index.html#COTTONMOUTH-II, 2008.

[7] Social Engineering a USB Drive. https://www.cmu.edu/iso/aware/
be-aware/usb.html, 2016.

[8] AIA Vision Online. USB3 Vision Specification. http://www.
visiononline.org/vision-standards-details.cfm?id=167&type=11, 2008.

[9] Alex Washburn. Snowden Smuggled Documents From NSA on a
Thumb Drive. https://www.wired.com/2013/06/snowden-thumb-drive/,
2013.

[10] Alexandru Cornea. Linux-USB: [PROBLEM] USB Hub malformed
packets causes null pointer dereference. http://marc.info/?l=linux-usb&
m=144717111312054&w=2, 2016.

[11] ALLOYSEED. GIM Answer Monitor USB Charging
Data Cable GPS Locator. https://www.aliexpress.com/item/
1m-GPS-Positioning-Pick-up-Line-Tracker-Remote-Tracking-Cable-\
GIM-Answer-Monitor-USB-Charging-Data/32813314360.html?trace=
msiteDetail2pcDetail, 2017.

[12] S. Angel, R. S. Wahby, M. Howald, J. B. Leners, M. Spilo, Z. Sun, A. J.
Blumberg, and M. Walfish. Defending against Malicious Peripherals
with Cinch. In USENIX Security Symposium, Aug. 2016.

[13] Apple and Hewlett-Packard and Intel and Microsoft and Renesas and
STMicroelectronics and Texas Instruments. Universal Serial Bus 3.2
Specification, Revision 1.0, September 2017.

[14] J. Bang, B. Yoo, and S. Lee. Secure USB bypassing tool. digital
investigation, 7:S114–S120, 2010.

[15] D. Barrall and D. Dewey. Plug and Root, the USB Key to the Kingdom.
In Black Hat Briefings, 2005.

[16] A. Bates, R. Leonard, H. Pruse, D. Lowd, and K. R. B. Butler.
Leveraging USB to Establish Host Identity Using Commodity Devices.
In Proceedings of the 21st ISOC Network and Distributed System
Security Symposium (NDSS’14), San Diego, CA, USA, Feb. 2014.

[17] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy Whole-
System Provenance for the Linux Kernel. In Proceedings of the 24th
USENIX Security Symposium, Aug. 2015.

[18] Benson Leung. Surjtech’s 3M USB A-to-C cable completely violates
the USB spec. Seriously damaged my laptop. https://www.amazon.
com/review/R2XDBFUD9CTN2R/ref=cm cr rdp perm, 2016.

[19] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In
Proceeding of the 2017 IEEE Symposium on Security and Privacy
(S&P), 2017.

[20] Binyamin Sharet. Linux-USB: Gadgetfs - adding support for
delegation of setup requests. http://marc.info/?l=linux-usb&m=
147102748419146&w=2, 2016.

[21] B. Blanchet, V. Cheval, X. Allamigeon, and B. Smyth. ProVerif: Cryp-
tographic protocol verifier in the formal model. URL http://prosecco.
gforge. inria. fr/personal/bblanche/proverif, 2010.

[22] T. Bosschert. Battling Anti-Forensics: Beating the U3 Stick. Journal
of Digital Forensic Practice, 1(4):265–273, 2007.

[23] S. Bratus, T. Goodspeed, P. C. Johnson, S. W. Smith, and R. Speers.
Perimeter-crossing buses: a new attack surface for embedded systems.
In Proceedings of the 7th Workshop on Embedded Systems Security
(WESS 2012), 2012.

[24] M. Brocker and S. Checkoway. iSeeYou: Disabling the MacBook
webcam indicator LED. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 337–352, 2014.

[25] K. Butler, S. McLaughlin, and P. McDaniel. Kells: A Protection
Framework for Portable Data. In Proceedings of the 26th Annual
Computer Security Applications Conference, 2010.

[26] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the
Difficulty of Software-based Attestation of Embedded Devices. In
Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security, CCS ’09, 2009.

[27] A. Caudill and B. Wilson. Phison 2251-03 (2303) Custom Firmware
& Existing Firmware Patches (BadUSB). GitHub, 26, Sept. 2014.

[28] CBS/AP. BlackShades malware hijacked half a million
computers, FBI says. http://www.cbsnews.com/news/
blackshades-malware-hijacked-half-a-million-computers-fbi-says/,
2014. Accessed: 2016-11-10.

[29] Center for Development of Security Excellence. Security Posters. http:
//www.cdse.edu/resources/posters.html.

[30] Common Vulnerabilities and Exposures. CVE-2006-2147. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2147, 2006.

[31] Common Vulnerabilities and Exposures. CVE-2010-2568. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568, 2010.

[32] Compaq and Digital Equipment Corporation and IBM PC Company
and Intel and Microsoft and NEC and Northern Telecom. Universal
Serial Bus Specification, Revision 1.0, January 1996.

[33] Compaq and Intel and Microsoft and NEC. Universal Serial Bus
Specification, Revision 1.1, September 1998.

14

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1285
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1285
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1286
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1286
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1287
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-1287
http://www.nsaplayset.org/turnipschool
http://www.nsaplayset.org/turnipschool
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-I
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-I
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-II
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html#COTTONMOUTH-II
https://www.cmu.edu/iso/aware/be-aware/usb.html
https://www.cmu.edu/iso/aware/be-aware/usb.html
http://www.visiononline.org/vision-standards-details.cfm?id=167&type=11
http://www.visiononline.org/vision-standards-details.cfm?id=167&type=11
https://www.wired.com/2013/06/snowden-thumb-drive/
http://marc.info/?l=linux-usb&m=144717111312054&w=2
http://marc.info/?l=linux-usb&m=144717111312054&w=2
https://www.aliexpress.com/item/1m-GPS-Positioning-Pick-up-Line-Tracker-Remote-Tracking-Cable-\GIM-Answer-Monitor-USB-Charging-Data/32813314360.html?trace=msiteDetail2pcDetail
https://www.aliexpress.com/item/1m-GPS-Positioning-Pick-up-Line-Tracker-Remote-Tracking-Cable-\GIM-Answer-Monitor-USB-Charging-Data/32813314360.html?trace=msiteDetail2pcDetail
https://www.aliexpress.com/item/1m-GPS-Positioning-Pick-up-Line-Tracker-Remote-Tracking-Cable-\GIM-Answer-Monitor-USB-Charging-Data/32813314360.html?trace=msiteDetail2pcDetail
https://www.aliexpress.com/item/1m-GPS-Positioning-Pick-up-Line-Tracker-Remote-Tracking-Cable-\GIM-Answer-Monitor-USB-Charging-Data/32813314360.html?trace=msiteDetail2pcDetail
https://www.amazon.com/review/R2XDBFUD9CTN2R/ref=cm_cr_rdp_perm
https://www.amazon.com/review/R2XDBFUD9CTN2R/ref=cm_cr_rdp_perm
http://marc.info/?l=linux-usb&m=147102748419146&w=2
http://marc.info/?l=linux-usb&m=147102748419146&w=2
http://www.cbsnews.com/news/blackshades-malware-hijacked-half-a-million-computers-fbi-says/
http://www.cbsnews.com/news/blackshades-malware-hijacked-half-a-million-computers-fbi-says/
http://www.cdse.edu/resources/posters.html
http://www.cdse.edu/resources/posters.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2147
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2568


[34] Comptia. Cyber secure: a look at employee cybersecurity
habits in the workplace. https://www.comptia.org/resources/
cyber-secure-a-look-at-employee-cybersecurity-habits-in-the-workplace,
2015.

[35] A. Cunningham. https://arstechnica.com/gadgets/2014/08/
a-brief-history-of-usb-what-it-replaced-and-what-has-failed-to-replace-it/.

[36] Dan Patterson. How to build an external GPU for 4K video
editing, VR, and gaming. http://www.techrepublic.com/article/
how-to-build-an-external-gpu-for-4k-video-editing-vr-and-gaming/,
2016.

[37] Darren Pauli. Secret defence documents lost to
foreign intelligence. http://www.itnews.com.au/news/
secret-defence-documents-lost-to-foreign-intelligence-278961, 2011.

[38] A. Davis. Lessons learned from 50 bugs: Common USB driver
vulnerabilities. Technical report, technical report, NCC Group, 2013.

[39] A. Davis. Revealing Embedded Fingerprints: Deriving Intelligence
from USB Stack Interactions. In Blackhat USA, July 2013.

[40] S. A. Diwan, S. Perumal, and A. J. Fatah. Complete security package
for USB thumb drive. Computer Engineering and Intelligent Systems,
5(8):30–37, 2014.

[41] Dominic Spill. USBProxy. https://github.com/dominicgs/USBProxy,
2014.

[42] Elizabeth Weise. A hacker’s best friend is a nice
employee. http://www.usatoday.com/story/tech/news/2016/08/15/
hacker-social-engineering-defcon-black-hat/88621412/, 2016.

[43] Ellisys. USB Explorer 200 USB 2.0 Protocol Analyzer. http://www.
ellisys.com/products/usbex200/index.php, 2013.

[44] Falliere, Nicolas and Murchu, Liam O and Chien, Eric. W32.Stuxnet
Dossier. https://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/w32 stuxnet dossier.pdf, 2011.

[45] N. Fitzgibbon and M. Wood. Conficker. C: A technical analysis.
SophosLabs, Sophon Inc, 2009.

[46] P. Goldstein. 4 Ways to Prevent Leaks via USB Devices.
FedTech, July 2017. https://fedtechmagazine.com/article/2017/07/
4-ways-prevent-leaks-usb-devices.

[47] GoodFET. Facedancer21. http://goodfet.sourceforge.net/hardware/
facedancer21/, 2016.

[48] Google. Found Linux kernel USB bugs. https://github.com/google/
syzkaller/blob/master/docs/linux/found bugs usb.md, 2017.

[49] M. Guri, M. Monitz, and Y. Elovici. USBee: air-gap covert-channel via
electromagnetic emission from USB. In Privacy, Security and Trust
(PST), 2016 14th Annual Conference on, pages 264–268. IEEE, 2016.

[50] Hak5. Episode 709: USB Rubber Ducky Part 1. http://hak5.org/
episodes/episode-709, 2013.

[51] Hak5. USB Rubber Ducky Payloads. https://github.com/hak5darren/
USB-Rubber-Ducky/wiki/Payloads, 2013.

[52] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. Butler. FirmUSB:
Vetting USB Device Firmware using Domain Informed Symbolic Ex-
ecution. In 24th ACM Conference on Computer and Communications
Security (CCS’17), Dallas, USA, 2017.

[53] Hewlett-Packard, Intel, Microsoft, Renesas, STMicroelectronics, and
T. Instruments. Universal Serial Bus Type-C Cable and Connector
Specification, Revision 1.1, April 2015.

[54] Hewlett-Packard and Intel and Microsoft and NEC and ST-NXP
Wireless and Texas Instruments. Universal Serial Bus 3.0 Specification,
Revision 2.0, November 2008.

[55] Hewlett-Packard and Intel and Microsoft and Renesas and ST-Ericsson
and Texas Instruments. Universal Serial Bus 3.1 Specification, Revision
1.0, July 2013.

[56] H. J. Highland. The BRAIN virus: fact and fantasy. Computers &
Security, 7(4):367–370, 1988.

[57] Imation. IronKey Secure USB Devices Protect Against BadUSB Mal-
ware. http://www.ironkey.com/en-US/solutions/protect-against-badusb.
html, 2014.

[58] INT3.CC. The Original USB Condom. https://int3.cc/products/
usbcondoms, 2018.

[59] IronKey. IronKey. http://www.ironkey.com/en-US/resources/, 2013.
[60] J. R. Jacobs. Measuring the effectiveness of the USB flash drive as

a vector for social engineering attacks on commercial and residential
computer systems. Master’s thesis, Embry-Riddle Aeronautical Uni-
versity, 2011.

[61] M. Jodeit and M. Johns. USB Device Drivers: A Stepping Stone into
your Kernel. DEEPSEC, 2009.

[62] P. Johnson, S. Bratus, and S. Smith. Protecting Against Malicious
Bits On the Wire: Automatically Generating a USB Protocol Parser

for a Production Kernel. In Proceedings of the 33th Annual Computer
Security Applications Conference, ACSAC ’17, 2017.

[63] P. C. Johnson. Towards A Verified Complex Protocol Stack In A
Production Kernel: Methodology And Demonstration. PhD thesis,
Dartmouth College, Hanover, New Hampshire, 2016.

[64] S. N. Jones, C. R. Strong, D. D. E. Long, and E. L. Miller. Tracking
Emigrant Data via Transient Provenance. In 3rd Workshop on the
Theory and Practice of Provenance, TAPP’11, June 2011.

[65] S. Kamkar. USBdriveby. http://samy.pl/usbdriveby/, 2014.
[66] Kanguru Solutions. Secure Encrypted USB Flash Drives. https://www.

kanguru.com/.
[67] KeeLog. Hardware Keylogger. https://www.keelog.com/, 2016.
[68] Kevin Poulsen and Kim Zetter. U.S. Intelligence Analyst Arrested in

Wikileaks Video Probe. http://www.wired.com/2010/06/leak/, 2010.
[69] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for

secure messaging protocols and their implementations: A symbolic and
computational approach. In Proceeding of the 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 435–450. IEEE,
2017.

[70] P. Kumaraguru, Y. Rhee, S. Sheng, S. Hasan, A. Acquisti, L. F. Cranor,
and J. Hong. Getting users to pay attention to anti-phishing education:
evaluation of retention and transfer. In Proceedings of the anti-phishing
working groups 2nd annual eCrime researchers summit, pages 70–81.
ACM, 2007.

[71] J. Larimer. Beyond Autorun: Exploiting vulnerabilities with removable
storage. In Blackhat DC, 2011.

[72] L. Letaw, J. Pletcher, and K. Butler. Host Identification via USB
Fingerprinting. 2011 IEEE 6th International Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE), May 2011.

[73] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the Integrity of
PERipherals’ Firmware. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, pages 3–16. ACM, 2011.

[74] V. C. Luo. Tracing USB Device artefacts on Windows XP operating
system for forensic purpose. In 5th Australian Digital Forensics Conf,
2007.

[75] Mathew J. Schwartz. How USB Sticks Cause Data Breach, Malware
Woes. http://www.pcworld.com/article/237600/companies lose 2 5
million from missing memory sticks study says.html, 2011.

[76] C. McGarry. New MacBook Pros reportedly going all in with
USB-C. http://www.macworld.com/article/3132395/hardware/
new-macbook-pros-reportedly-going-all-in-with-usb-c.html, Oct
2016.

[77] mich. Inside a low budget consumer hardware espionage implant. https:
//ha.cking.ch/s8 data line locator/, 2017.

[78] Michael Willett. Trusted Computing in Drives and
Other Peripherals. https://trustedcomputinggroup.org/
trusted-computing-drives-peripherals/, 2005.

[79] Microsoft. Security Intelligence Report. https://www.microsoft.com/
security/sir/default.aspx, 2015.

[80] Microsoft Windows Embedded 8.1 Industry. USB Filter (In-
dustry 8.1). https://msdn.microsoft.com/en-us/library/dn449350(v=
winembedded.82).aspx, 2014.

[81] MWR Labs. USB Fuzzing for the Masses. https://labs.mwrinfosecurity.
com/blog/usb-fuzzing-for-the-masses/, July 2011.

[82] M. Neugschwandtner, A. Beitler, and A. Kurmus. A Transparent
Defense Against USB Eavesdropping Attacks. In Proceedings of the
9th European Workshop on System Security, EuroSec ’16, 2016.

[83] Nick Farrell. IT Managers glue up USB ports. https://www.theinquirer.
net/inquirer/news/1024318/it-managers-glue-up-usb-ports, 2006.

[84] K. Nohl. BadUSB Exposure: Hubs. https://opensource.srlabs.de/
projects/badusb/wiki/Hubs, November 2014.

[85] K. Nohl and J. Lehl. BadUSB – On Accessories That Turn Evil. In
Blackhat USA, Aug. 2014.

[86] OLEA Kiosks, Inc. Malware Scrubbing Cyber Security Kiosk. http:
//www.olea.com/product/cyber-security-kiosk/, 2015.

[87] P. Oliveira, Jr. FBI can turn on your web cam, and you’d never know it.
http://nypost.com/2013/12/08/fbi-can-turn-on-your-web-cam/, 8 Dec.
2013. Accessed: 2016-11-10.

[88] OPSWAT. Metascan. https://www.opswat.com/products/metascan,
2013.

[89] D. Oswald, B. Richter, and C. Paar. Side-channel attacks on the
Yubikey 2 one-time password generator. In International Workshop
on Recent Advances in Intrusion Detection, pages 204–222. Springer,
2013.

15

https://www.comptia.org/resources/cyber-secure-a-look-at-employee-cybersecurity-habits-in-the-workplace
https://www.comptia.org/resources/cyber-secure-a-look-at-employee-cybersecurity-habits-in-the-workplace
https://arstechnica.com/gadgets/2014/08/a-brief-history-of-usb-what-it-replaced-and-what-has-failed-to-replace-it/
https://arstechnica.com/gadgets/2014/08/a-brief-history-of-usb-what-it-replaced-and-what-has-failed-to-replace-it/
http://www.techrepublic.com/article/how-to-build-an-external-gpu-for-4k-video-editing-vr-and-gaming/
http://www.techrepublic.com/article/how-to-build-an-external-gpu-for-4k-video-editing-vr-and-gaming/
http://www.itnews.com.au/news/secret-defence-documents-lost-to-foreign-intelligence-278961
http://www.itnews.com.au/news/secret-defence-documents-lost-to-foreign-intelligence-278961
https://github.com/dominicgs/USBProxy
http://www.usatoday.com/story/tech/news/2016/08/15/hacker-social-engineering-defcon-black-hat/88621412/
http://www.usatoday.com/story/tech/news/2016/08/15/hacker-social-engineering-defcon-black-hat/88621412/
http://www.ellisys.com/products/usbex200/index.php
http://www.ellisys.com/products/usbex200/index.php
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://fedtechmagazine.com/article/2017/07/4-ways-prevent-leaks-usb-devices
https://fedtechmagazine.com/article/2017/07/4-ways-prevent-leaks-usb-devices
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
http://hak5.org/episodes/episode-709
http://hak5.org/episodes/episode-709
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
http://www.ironkey.com/en-US/solutions/protect-against-badusb.html
http://www.ironkey.com/en-US/solutions/protect-against-badusb.html
https://int3.cc/products/usbcondoms
https://int3.cc/products/usbcondoms
http://www.ironkey.com/en-US/resources/
http://samy.pl/usbdriveby/
https://www.kanguru.com/
https://www.kanguru.com/
https://www.keelog.com/
http://www.wired.com/2010/06/leak/
http://www.pcworld.com/article/237600/companies_lose_2_5_million_from_missing_memory_sticks_study_says.html
http://www.pcworld.com/article/237600/companies_lose_2_5_million_from_missing_memory_sticks_study_says.html
http://www.macworld.com/article/3132395/hardware/new-macbook-pros-reportedly-going-all-in-with-usb-c.html
http://www.macworld.com/article/3132395/hardware/new-macbook-pros-reportedly-going-all-in-with-usb-c.html
https://ha.cking.ch/s8_data_line_locator/
https://ha.cking.ch/s8_data_line_locator/
https://trustedcomputinggroup.org/trusted-computing-drives-peripherals/
https://trustedcomputinggroup.org/trusted-computing-drives-peripherals/
https://www.microsoft.com/security/sir/default.aspx
https://www.microsoft.com/security/sir/default.aspx
https://msdn.microsoft.com/en-us/library/dn449350(v=winembedded.82).aspx
https://msdn.microsoft.com/en-us/library/dn449350(v=winembedded.82).aspx
https://labs.mwrinfosecurity.com/blog/usb-fuzzing-for-the-masses/
https://labs.mwrinfosecurity.com/blog/usb-fuzzing-for-the-masses/
https://www.theinquirer.net/inquirer/news/1024318/it-managers-glue-up-usb-ports
https://www.theinquirer.net/inquirer/news/1024318/it-managers-glue-up-usb-ports
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
https://opensource.srlabs.de/projects/badusb/wiki/Hubs
http://www.olea.com/product/cyber-security-kiosk/
http://www.olea.com/product/cyber-security-kiosk/
http://nypost.com/2013/12/08/fbi-can-turn-on-your-web-cam/
https://www.opswat.com/products/metascan


[90] J. Patrick-Evans, L. Cavallaro, and J. Kinder. POTUS: Probing Off-
The-Shelf USB Drivers with Symbolic Fault Injection. In 11th USENIX
Workshop on Offensive Technologies (WOOT 17), Vancouver, BC,
2017. USENIX Association.

[91] Paul Sewers. US Govt. plant USB sticks in security
study, 60the bait. http://thenextweb.com/insider/2011/06/28/
us-govt-plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait/,
2011.

[92] D. Pham, M. Halgamuge, A. Syed, and P. Mendis. Optimizing windows
security features to block malware and hack tools on USB storage
devices. In Progress in electromagnetics research symposium, 2010.

[93] S. Poeplau and J. Gassen. A Honeypot for Arbitrary Malware on USB
Storage Devices. In 7th International Conference on Risk and Security
of Internet and Systems, CRiSIS ’12, Oct. 2012.

[94] P. Porras, H. Saidi, and V. Yegneswaran. Conficker C Analysis. SRI
International, 2009.

[95] R. S. Portnoff, L. N. Lee, S. Egelman, P. Mishra, D. Leung, and
D. Wagner. Somebody’s watching me?: Assessing the effectiveness
of webcam indicator lights. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, 2015.

[96] Renesas. Renesas Electronics Delivers R9J02G012 Controller That
Enables Device-to-Device Authentication in Support of Safer USB
Power Delivery Ecosystem. https://www.renesas.com/en-hq/about/
press-center/news/2017/news20170530.html, 2017.

[97] D. Rich. Authentication in Transient Storage Device Attachments.
Computer, 40(4):102–104, April 2007.

[98] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-Driven Access Control: Rethinking Permission Grant-
ing in Modern Operating Systems. In 2012 IEEE Symposium on
Security and Privacy, pages 224–238, May 2012.

[99] Rosie Hall. Linux-USB: USB vulnerability. http://marc.info/?l=
linux-usb&m=146972356605600&w=2, 2016.

[100] F. L. Sang, V. Nicomette, and Y. Deswarte. I/O attacks in Intel PC-
based architectures and countermeasures. In SysSec Workshop (SysSec),
2011 First, pages 19–26. IEEE, 2011.

[101] J. Saxe, D. Mentis, and C. Greamo. Mining web technical discussions
to identify malware capabilities. In 2013 IEEE 33rd International
Conference on Distributed Computing Systems Workshops, pages 1–
5. ieeexplore.ieee.org, July 2013.

[102] S. Schumilo, R. Spenneberg, and H. Schwartke. Don’t trust your USB!
How to find bugs in USB device drivers. In Blackhat Europe, Oct. 2014.

[103] Sergey Bratus and Travis Goodspeed. Facedancer USB: Exploiting the
Magic School Bus. https://recon.cx/2012/schedule/events/237.en.html,
2012.

[104] G. Shah, A. Molina, and M. Blaze. Keyboards and Covert Channels.
In Proceedings of the 2006 USENIX Security Symposium, Aug. 2006.

[105] S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and J. Downs.
Who falls for phish?: A demographic analysis of phishing susceptibility
and effectiveness of interventions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 373–382.
ACM, 2010.

[106] S. Shin and G. Gu. Conficker and Beyond: A Large-scale Empirical
Study. In Proceedings of the 26th Annual Computer Security Applica-
tions Conference, ACSAC ’10, 2010.

[107] Siliconch Systems. USB Type-C Authentication IP. http://www.
siliconch.com/authentication.html, 2017.

[108] K. Sridhar, S. Prasad, L. Punitha, and S. Karunakaran. EMI issues of
universal serial bus and solutions. In Electromagnetic Interference and
Compatibility, 2003. INCEMIC 2003. 8th International Conference on,
pages 97–100. IEEE, 2003.

[109] S. Stasiukonis. Social engineering, the USB way. Dark Reading, 2006.
[110] Y. Su, D. Genkin, D. Ranasinghe, and Y. Yarom. USB Snooping Made

Easy: Crosstalk Leakage Attacks on USB Hubs. In 26th USENIX
Security Symposium (USENIX Security 17), Vancouver, BC, 2017.

[111] SystemSoft Corporation and Intel Corporation. Universal Serial Bus
Common Class Specification, Revision 1.0, December 1997.

[112] P. Szor. Duqu–threat research and analysis. McAfee Labs, 2011.
https://scadahacker.com/library/Documents/Cyber Events/McAfee%
20-%20W32.Duqu%20Threat%20Analysis.pdf.

[113] Tal Ater. Chrome Bugs Allow Sites to Listen to Your Private
Conversations. https://www.talater.com/chrome-is-listening/, 2014.

[114] TCG. Storage Work Group Storage Security Sub-
system Class: Opal. https://trustedcomputinggroup.org/
storage-work-group-storage-security-subsystem-class-opal/, 2015.

[115] The USB Device Working Group. USB Class Codes. http://www.usb.
org/developers/defined class, 2015.

[116] D. J. Tian, A. Bates, and K. R. B. Butler. Defending Against Malicious
USB Firmware with GoodUSB. In Proceedings of the 31st Annual
Computer Security Applications Conference, ACSAC ’15, 2015.

[117] D. J. Tian, A. Bates, K. R. B. Butler, and R. Rangaswami. ProvUSB:
Block-level Provenance-Based Data Protection for USB Storage De-
vices. In Proceedings of the 2016 ACM Conference on Computer and
Communications Security, CCS ’16, Oct 2016.

[118] D. J. Tian, N. Scaife, A. Bates, K. R. B. Butler, and P. Traynor.
Making USB Great Again with USBFILTER. In 25th USENIX Security
Symposium (USENIX Security 16), Washington, D.C., 2016.

[119] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori, E. Bursztein,
and M. Bailey. Users Really Do Plug in USB Drives They Find. In
Proceedings of the 37th IEEE Symposium on Security and Privacy
(S&P ’16), San Jose, California, USA, May 2016.

[120] United States of America v. Reality Winner. Government’s Response
to Motion to Reopen Detention Hearing Pursuant to 18 U.S.C. Section
3142(f) and Impose Conditions of Release. CR 1:17-34, 2017.

[121] USB 3.0 Promoter Group. Universal Serial Bus Type-C Authentication
Specification, Revision 1.0, March 2016.

[122] USB Implementers Forum. Universal Serial Bus Device Class Defini-
tion for Content Security Devices, Release 2.0, June 2012.

[123] USB Implementers Forum. USB-IF Statement regarding USB secu-
rity. http://www.usb.org/press/USB-IF Statement on USB Security
FINAL.pdf, Aug. 2014.

[124] USB Implementers Forum. Universal Serial Bus Power Delivery
Specification, Revision 2.0 V1.2, March 2016.

[125] USB Implementers Forum, Inc. USB Mass Storage Class CBI Trans-
port. http://www.usb.org/developers/docs/devclass docs/usb msc cbi
1.1.pdf, 2003.

[126] USB Implementers Forum, Inc. USB Mass Storage Class Specification
Overview. http://www.usb.org/developers/docs/devclass docs/Mass
Storage Specification Overview v1.4 2-19-2010.pdf, 2010.

[127] USBKiller. Usbkiller. https://www.usbkill.com/, 2016.
[128] R. D. Vega. USB Attacks: Fun with Plug and 0wn.

https://labs.mwrinfosecurity.com/assets/135/original/mwri
t2-usb-fun-with-plug-and-0wn 2009-10-29.pdf, October 2009.

[129] D. Wagenaar, D. Pavlov, and S. Yannick. USB baiting. Universite van
Amserdam, 2011.

[130] J. Walter. “Flame Attacks”: Briefing and Indicators of Compromise.
McAfee Labs Report, May 2012.

[131] P. Walters. The risks of using portable devices. Carnegie Mellon Uni-
versity. Produced for US-CERT, a government organization. Retrieved
from http://www. us-cert. gov, 2012.

[132] Z. Wang and A. Stavrou. Exploiting Smart-phone USB Connectivity for
Fun and Profit. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 357–366, New York, NY,
USA, 2010. ACM.

[133] B. Yang, D. Feng, Y. Qin, Y. Zhang, and W. Wang. TMSUI: A Trust
Management Scheme of USB Storage Devices for Industrial Control
Systems. Cryptology ePrint Archive, Report 2015/022, 2015. http:
//eprint.iacr.org/.

[134] K. Zetter. Meet “Flame”, The Massive Spy Malware Infiltrating Iranian
Computers. Wired, 28 May 2012. https://www.wired.com/2012/05/
flame/.

[135] S. Zhioua. The Middle East under Malware Attack Dissecting Cyber
Weapons. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops, pages 11–16. ieeexplore.ieee.org, July
2013. http://dx.doi.org/10.1109/ICDCSW.2013.30.

[136] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy
kernels for on-demand isolated I/O. In Proceeding of the 2014 IEEE
Symposium on Security and Privacy (S&P), 2014.

16

http://thenextweb.com/insider/2011/06/28/us-govt-plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait/
http://thenextweb.com/insider/2011/06/28/us-govt-plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait/
https://www.renesas.com/en-hq/about/press-center/news/2017/news20170530.html
https://www.renesas.com/en-hq/about/press-center/news/2017/news20170530.html
http://marc.info/?l=linux-usb&m=146972356605600&w=2
http://marc.info/?l=linux-usb&m=146972356605600&w=2
https://recon.cx/2012/schedule/events/237.en.html
http://www.siliconch.com/authentication.html
http://www.siliconch.com/authentication.html
https://scadahacker.com/library/Documents/Cyber_Events/McAfee%20-%20W32.Duqu%20Threat%20Analysis.pdf
https://scadahacker.com/library/Documents/Cyber_Events/McAfee%20-%20W32.Duqu%20Threat%20Analysis.pdf
https://www.talater.com/chrome-is-listening/
https://trustedcomputinggroup.org/storage-work-group-storage-security-subsystem-class-opal/
https://trustedcomputinggroup.org/storage-work-group-storage-security-subsystem-class-opal/
http://www.usb.org/developers/defined_class
http://www.usb.org/developers/defined_class
http://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf
http://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf
http://www.usb.org/developers/docs/devclass_docs/usb_msc_cbi_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/usb_msc_cbi_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf
http://www.usb.org/developers/docs/devclass_docs/Mass_Storage_Specification_Overview_v1.4_2-19-2010.pdf
https://www.usbkill.com/
https://labs.mwrinfosecurity.com/assets/135/original/mwri_t2-usb-fun-with-plug-and-0wn_2009-10-29.pdf
https://labs.mwrinfosecurity.com/assets/135/original/mwri_t2-usb-fun-with-plug-and-0wn_2009-10-29.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.wired.com/2012/05/flame/
https://www.wired.com/2012/05/flame/
http://dx.doi.org/10.1109/ICDCSW.2013.30

	Introduction
	Background
	The Evolution of USB
	USB Protocol
	Common Class Specifications
	Device Enumeration


	Understanding USB Attack Vectors
	Abuse of Human Layer
	Outsider Threats
	Insider Threats

	Abuse of Application Layer
	Code Injection
	Data Exfiltration

	Abuse of Transport Layer
	Protocol Masquerading
	Protocol Corruption

	Abuse of Physical Layer
	Signal Eavesdropping
	Signal Injection


	Securing USB
	Defense of Human Layer
	Security Training
	On-Device Data Encryption
	On-Device Host Authentication
	Host- or Device-Based Auditing
	Physically Disabling of Functionality

	Defense of Application Layer
	System Hardening
	Driver-Based Access Controls
	Device-Emulating Honeypots

	Defense of Transport Layer
	Firmware Verification
	USB Stack Fuzzing
	USB Packet Firewall
	Host-Emulating Honeypots

	Defense of Physical Layer
	Anti-Fingerprinting
	Secure Channel


	Is USB Type-C the Answer?
	TCA Description
	USB Certificate Authorities
	Authentication Protocol
	Secure Key Storage and Processing
	Security Policy

	Formal Verification
	Results
	Other Issues

	Future Directions
	Conclusion
	References

