
SoK: All or Nothing - A Postmortem of Solutions
to the Third-Party Script Inclusion Permission Model

and a Path Forward

Steven Sprecher
Northeastern University

swsprec@ccs.neu.edu

Christoph Kerschbaumer
Mozilla Corporation

ckerschb@mozilla.com

Engin Kirda
Northeastern University

ek@ccs.neu.edu

Abstract—The web execution model allows third-party
JavaScript to be leveraged in a single execution context.
Access control for these scripts is currently all or nothing.
It has been this way for over a decade despite the knowl-
edge that this model allows for privacy violations and even
user data exfiltration. Consequently, users have little to no
control over which third-parties operate on their Personally
Identifying Information (PII) when interacting with a web
application.

In this work we aim to explain the lack of solutions to this
problem, and to suggest more promising future directions.
We first survey past proposed solutions and their trade-offs.
We then create a monitoring system in the Firefox browser
which captures third-party script access to user supplied PII
in HTML Form Elements. We proceed to inspect 100,000
websites with our Monitor and custom web crawler to
highlight the complexity of use cases of third-party scripts
operating on user PII.

Our findings inform the creation of a grading rubric
and systematization for solutions in this space, which we
then apply to many previous works. The complexity exposed
through this effort allows us to start a discussion around
why current technological and policy solutions fail adoption.
Ultimately we propose a research direction that allows web
applications to take advantage of the interoperability of the
web execution model while also respecting an end user’s
privacy and security.

Index Terms—Web security, Privacy, Browsers, Third-Party
Scripts, JavaScript

1. Introduction

JavaScript has evolved to become the most pervasive
and dominant programming language of the web, and
is omnipresent on websites today. Among the reasons
for its proliferation is its ability to pull and integrate
together JavaScript code from multiple origins on the In-
ternet. While this execution scheme is extremely powerful,
pulling code from different origins into the same execu-
tion context also grants scripts full access to application
internals, and in turn poses genuine threats to the security
and privacy of end users [1]–[6]. The technical ability of
third-party scripts to access or even exfiltrate PII such as
email addresses, usernames, and passwords is particularly
worrisome.

Many successful web applications aim to take advan-
tage of the interoperability of the modern web. At the
same time, they worry about the aforementioned security
and privacy implications. Thus, they do not wish to grant
a script access to application internals, and rather choose
to execute the script in a different security context. Iso-
lating, and ultimately sandboxing scripts by loading them
into an <iframe> element is effective from a security
point of view because it causes the browser to create a
new global object, and therefore completely separates the
execution context of the third-party script from the main
application. The downside, however, is that the pulled in
third-party script has limited options to interact with the
main application.

In summary, the current web security model permits a
third-party script either (a) full access to the main applica-
tion, or (b) no access by generating a separate execution
environment – effectively separating the two. Naturally,
the majority of use cases on the web require a mix of
the two. Over the course of a decade, the web community
has proposed and introduced a variety of approaches to
address this “all or nothing” trust paradigm. Classes of so-
lutions include applying fine-grained application-specific
controls, incorporating access control ideas into web el-
ements, and tracking information flow to allow decisions
on the script behavior. Yet, neither browser vendors nor
web application developers seemingly have adopted any of
these solutions. The consensus in industry is that the trade-
offs between overhead, developer and user requirements,
security flaws, backwards compatibility, and site breakage
seem almost impossible to navigate successfully.

In this work, we conduct a deep dive into the tech-
niques and trade-offs of previous academic and industry
solutions. We find a complicated network of costs and
benefits that has prevented the mainstream adoption of
any solutions. This prompted us to investigate the problem
in the wild to gain a deeper understanding of the lack
of real world implementation. To do this we develop an
in-browser Script Access Monitor that allows us to inves-
tigate all Document Object Model (DOM) [7] element
access, and a custom Selenium [8]-based inspector to
demonstrate and visualise how complicated the security
and privacy of third-party scripts are in their uses. We
inspect and measure 100,000 websites, and highlight the
puzzling situation of third-party script inclusion and its
security and privacy implications resulting from the many
middle ground usages of this elevated privilege. Lever-

206

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Steven Sprecher. Under license to IEEE.
DOI 10.1109/EuroS&P53844.2022.00021

aging our insights from our investigations, we develop
a grading rubric for techniques in this space and sys-
tematize them by applying our rubric. Completing our
postmortem, we distill our findings and recommend a
viable and promising path forward.

In summary, this work contributes the following:

• We conduct a deep dive into current and past ap-
proaches (Section 2) which aim to close the gap
between full access and no access of third-party script
inclusion within web applications.

• We implement a Script Access Monitor in Firefox
(v.88 - v.92) which allows deep inspection of any
interaction between JavaScript and the DOM, and
illustrate the problematic trust situation by monitor-
ing third-party scripts accessing PII in HTML Form
Elements on 100,000 websites (Section 3).

• We present a systematized grading rubric for tech-
nical solutions to this problem and apply it to past
work (Section 4).

• We provide a discussion (Section 5) around why cur-
rent technological and policy solutions fail adoption,
and propose a research direction that allows web
applications to take advantage of the interoperability
of the web execution model while also respecting an
end user’s privacy and security.

Availability. All code and data is publicly available on
the authors’ websites, or directly accessible here: https://
gitlab.com/swsprec/sok-allornothing.

2. Background and Related Work

This section begins by detailing our survey method-
ology (Section 2.1) for the selection of related work.
We then take a step back to present measurement work
(Section 2.2) summarizing research projects in the field of
third-party JavaScript inclusion, and its effects on an end
user’s security and privacy. We then present relevant back-
ground information on the current JavaScript Execution
and Security Model enforced within web browsers (Sec-
tion 2.3). Next, we survey approaches of the most promis-
ing techniques to introduce an additional level between
full and no trust, and evaluate trade-offs (Section 2.4 and
Section 2.5). To provide a wide spectrum of related work,
we finally review miscellaneous solutions (Section 2.6)
which sometimes only partially address the problem, but
still provide relevant insights and details when trying to
tackle third-party script containment.

2.1. Survey Methodology

In order to be transparent and repeatable about our
research selection process, we provide a detailed survey
methodology below. In order to provide a thorough back-
ground, we additionally cite supporting work that does
not meet all our selection criteria to discuss. All solution
techniques found in Sections 2.4 and 2.5 and any that
factor into our systematization and rubric were found
using the following methodology.

1) Paper collection methodology In order to capture
as much relevant work as possible, we compiled our
paper list in the following way:

• First, using our domain expertise we collect the
most relevant and impactful work into a Seed List.

• Second, we include any vaguely relevant work
(VRW) that is either cited by or cites any of
the papers in our Seed List and combine into a
new list, List 2. We define VRW as work that
includes some form of discussion of third party
scripts, permission models or access control on the
web, information flow, confinement or isolation,
JavaScript control or the like in the title and/or
abstract.

• Third, we search through the top security confer-
ences, Google Scholar, and ACM Digital Library
for the key terms that define VRW, and combine
these with our last step to form List 3.

• Fourth, we do a breadth-first-search of all papers
in List 3 for VRW as detailed in our second step
to refine our list into List 4.

• Finally, we repeat the previous step with all the
new work that was added until we are left with
List 5 containing over 100 research papers.

2) Exclusion Criteria To further refine our collected
works into a distilled list with directed relevance to
our studied problem, we set the following exclusion
criteria:

• The work is not applicable to access control, per-
mission models, or is too tangential to be useful.

• The work is an exploration and does not include a
defense attempt.

3) Inclusion Criteria To ensure only the most relevant
research is included in our analysis, we set the fol-
lowing criteria for a paper to be included:

• The research must be directly applicable with min-
imal changes to JavaScript 3rd party permissions
and use therein.

4) Application of Criteria We apply our stated criteria
to our collected paper list, List 5, in four rounds as
detailed below:

• Round 1: We read the title and abstract of each
paper, and apply the exclusion criteria to remove
papers from the list.

• Round 2: We read the title, abstract, introduction
and conclusion of all papers that survived Round 1
and apply the exclusion criteria again.

• Round 3: We do a full read of papers from the
previous round and reapply the exclusion criteria.

• Round 4: We perform a full re-read of each paper
from Round 3 and apply the inclusion criteria.

2.2. Studies on Third-Party Scripts

The JavaScript language in and of itself can be dan-
gerous [9]–[11]. Unfortunately, JavaScript is not the only
danger on the web for users, and prior work highlights
this history and its development [12]–[14], as well as
measuring the dangers of browser access control inco-
herences [15]. To make matters worse, it has been shown
both historically and recently that the web is a tangled
mess of included scripts. This opens issues in outdated

207

dependencies, and creates a web of implicit trust and a
complicated ecosystem of inclusions [1], [16]–[20]. These
scripts pose additional danger in the leakage of PII, and
work has quantified this by looking at information flows,
security issues on webpages where PII is present, and even
the diffusion of PII across the web [21]–[24]. Worse yet,
web tracking and data exfiltration by third-parties has been
shown to be pervasive and a critical privacy issue [2], [25].
All of the above highlights the problematic situation of
third-party script inclusion and calls for remedy.

2.3. The Execution and Security Context

The browser JavaScript execution context consists of
three parts: the Document Object Model (DOM), the
Browser Object Model (BOM), and the JavaScript core.
JavaScript that is run in a first-party context, i.e. included
in the main page, is considered from the same origin and
executes in a global context, usually with unfettered access
to the DOM and BOM.

In order to prevent scripts from one origin accessing
another origin, the Same-Origin Policy (SOP) restricts
communication to and access of externally loaded re-
sources. The most common example of this is loading
a different origin in an <iframe> [26]. This element
is ideally locked down by applying additionally-provided
sandbox attributes that causes the browser to generate
a new global object, and therefore, completely separate it
from the context of the main application. Scripts cannot
access context between the barrier since they are not of
the same origin.

SOP cannot prevent JavaScript from accessing or ex-
filtrating information on a page when developers purpose-
fully pull and combine code from multiple origins in the
same execution context. Including a third-party script in
the context of the main application causes the script to
execute using the same global object, and thus grants the
third-party script full access to the DOM [7], and in turn
access to potentially confidential user information.

In order to add more flexibility to SOP and to discour-
age the aforementioned combining of code, Cross-Origin
Resource Sharing (CORS) [27] was developed. CORS
uses HTTP headers to define trusted origins and other
properties that scripts can leverage to bypass some of the
strictness of SOP.

Scripts that are included in the main page of a docu-
ment are considered as the same origin under SOP, thus
third party scripts that are loaded often get unfettered
access to the DOM and BOM. In order to mitigate this
risk, primarily to prevent Cross-Site Scripting (XSS), Con-
tent Security Policy (CSP) [28] was added to the security
model. CSP allows server administrators the ability to
specify an allowlist of domains of which the browser
will consider scripts as trusted. When a website owner
specifies this list in the CSP header, browsers will not
execute scripts loaded from any origin outside of this list.
This protects against unintended inlined script inclusions.

2.4. Script Isolation and Confinement

As discussed before, the World Wide Web Consortium
(W3C) introduced CSP, which allows web applications to
define an allowlist of trusted scripts. For example, a CSP

of "script-src example.com" allows scripts from
example.com to load, but would prevent scripts from
example.com to load further scripts from a different
origin. Relying on a CSP or not, the fundamental security
problem remains: the third-party script has full access
to application internals, and hence, access to confidential
user information [29], [30].

Techniques: The ultimate goal with isolation is to give
foreign JavaScript code its own context, but at the same
time, provide trusted channels to allow the third-party
script to interact with the main application. Hence, most
approaches build upon the window.postmessage
API [31], and either aim to improve the communication
between frames [32]–[34] or try to isolate foreign code
[35]. Put differently, most of the work surrounding isola-
tion and confinement can be boiled down to frame-based
confinement and language-based confinement. Other work
has changed where the isolation techniques are housed
in the browser stack, moving it to the JavaScript inter-
preter [36], to web workers [37], and even trying to inte-
grate control mechanisms in the client-side code to avoid
browser modification [38]. Confinement has also moved
towards more fine-grained controls by using data-confined
sandboxes [39], or object-level confinement [40]. Industry
has attmepted to isolate untrusted scripts by statically
rewriting code. However, all of these confinement projects
have been discontinued [41]–[44].

For an in-depth look at isolation and confinement
methods, we refer the reader to Van Acker and Sabelfeld’s
survey [45].

Trade-offs: Isolation and confinement errs on the side
of coarse-grained control. It forces code that is isolated
to not have access to data, and thus is not well-suited
for scripts that offer a service based on data in a web
application. The aforementioned techniques harden this
landscape and help add communication between isolated
components, but it is clear that it cannot successfully
work with scripts operating on data in the main con-
text. Building intercommunication pathways for different
scripts provides relief for privacy and security concerns
since they can remain isolated. However this technique
lacks usability, and hence, has not found widespread adop-
tion in industry.

2.5. Information Flow Control

Information Flow Control (IFC) is a technique that
allows tracking the flow of information throughout a sys-
tem.

This technique has been around in one form or another
in secure systems for quite some time. We see a form of
IFC in standard access control with a permission structure
and control over read and write operations. Prior to the
seminal work of Denning et al. in 1977 [46], IFC was
done at run time. Denning et al. pioneered the ability to
do IFC at program compile time, which reduces the load
on running programs, and allows for established security
before execution. The next iteration of IFC took hold
in language specific mechanisms for Java, and Objective
Caml [47], [48].

208

Most relevantly, tracking the flow of information
through the JavaScript engine and further throughout the
entire browsing context generally allows researchers and
developers to address the privacy and security concerns
highlighted within this work. Some even argue that track-
ing the flow of information is better suited to overcome
the problematic situation of granting a script full or no
access to application internals than SOP [49]. Obviously,
there is overlap between isolation and confinement and
IFC [45]. A way to enact IFC is to confine code, and
define rules to allow data to be passed between security
contexts.

Techniques: There are a multitude of different techni-
cal approaches and flavors of IFC in the browser context,
all with their own benefits and costs. Here we see the
evolution of the space in addition to these trade-offs.

One of the initial uses of IFC on the web was to secure
users against XSS attacks [4] using dynamic data tainting
to follow sensitive information though execution.

SOP was argued to be too coarse-grained to allow de-
velopers to have both security and flexibility in mashups,
where communication between components was not al-
lowed by Crites et al. [50]. The authors proposed looking
at pages like objects and applying IFC access control poli-
cies for fine-grained control of communications between
frames.

The application of these techniques to allow scripts
to operate on confidential information, yet disallowing
the leaking of this data, was proposed in BFlow by
Yip et al. [51]. BFlow was not without limitations, with
protection zones being fairly coarse-grained, significant
overhead both in terms of speed and effort, and difficulty
in deployment as it required many separate components.
The authors were also very clear that the browser exten-
sion space was still unmitigated. This was followed up by
Dhawan et al. with Sabre [52]. The rest of the work in
this space took to addressing the main problems that came
about with solutions of this kind, mainly overhead, cost,
developer effort, etc., as well as introduce new variants.

ConScript by Meyerovich et al. moves script confine-
ment and IFC to the client side by implementing IFC
into the JavaScript engine in the browser. To address the
developer effort issue, they also show is it possible to
automatically generate security policies either by static
code analysis or runtime analysis [6].

Guarnieri et al. took a static approach to secure infor-
mation flow in their tool Actarus. They use static analysis
to find vulnerabilities [53] and rewrite code, however they
ignore model reflective calls such as eval.

Introducing the concept of secure multi-execution
(SME) to IFC and the browser with FlowFox [54], De
Groef et al. utilized a two level security model and im-
plemented a full browser. Their overhead was notable, but
proved SME had life in this space.

Giffin et al. introduced Hails, which tackles private
data sharing further up the supply chain by adding manda-
tory access control to the Model-View-Controller (MVC)
architecture [55]. Part of their solution involved users
installing an extension to provide confinement in browser.

Richards et al. approached IFC from a different tech-
nical angle by using delimited histories with revocation as
a mechanism for IFC policy enforcement [56].

Kerschbaumer et al. implemented IFC in the
JavaScript engine of WebKit for the explict purpose of
preventing sensitive data exfiltration, as it monitored net-
work requests [57]. To address runtime issues with IFC
in general, Kerschbaumer et al. switched the information
tracking load from JavaScript interpreters to just-in-time
compilers, reducing the overhead [58].

To address the difficulty in getting changes into
browsers and their engines, Magazinius et al. proposed
multiple different supporting architectures to inline secu-
rity monitors for JavaScript including browser extensions,
web proxies, suffix proxies, and integrators [59].

Hedin et al. created JSFlow, which enhanced the
JavaScript interpreter, written in JavaScript as to be de-
ployed as a browser extension, which tracks information
flow even in the presence of libraries [60].

Stefan et al. created COWL, a label based mandatory
access control enforcement mechanism at context bound-
aries. The DOM level API is implemented in the layout
engine of browsers [3].

To address overhead issues, Kerschbaumer et al. intro-
duced CrowdFlow. CrowdFlow probabilistically switches
between two JavaScript interpreters, one for partial taint
tracking and one for full information flow tracking. The
switching is influenced by other users to increase accuracy
[61].

Rajani et al. helped to bridge a gap in IFC by account-
ing for event handling and all of the DOM APIs in their
instrumentation on WebKit [62].

Another inline tool, JEST, was created by Chudnov
and Naumann utilising the no-sensitive-upgrade technique
[63] .

To side-step the problems with both static and dy-
namic approaches to IFC, Hedin et al. developed a value-
sensitive hybrid approach [64].

Trade-offs: Throughout the works listed above, there
are many different limitations present. Often, these so-
lutions are trading off between runtime overhead, devel-
oper effort, ease of deployment, backwards compatibility,
and manual versus automatic labeling. Some works make
progress on a few issues, but no single solution is able
to combat all these compromises. Even an industry IFC
project, named FlowSafe [65], has been discontinued over
a decade ago.

2.6. Miscellaneous Approaches

Other solutions have also been proposed, yet they
are often more restrictive or only partially address the
problem.

Techniques: Solutions strip the ability of JavaScript
to perform unsafe functions [66], ensure browser security
with separation of contexts allowing for a multi-principal
platform [67], apply CSP to browser extensions [68],
fix and inject CSP into pages [69], verify the integrity
of scripts with signatures [70], block malicous scripts all
together [71], or secure the data pipeline surrounding user
input using trusted hardware [72].

Trade-offs: Often, these solutions aid the issue, but
suffer from similar trade-offs to IFC solutions, and have

209

less coverage, meaning they address a subset of the prob-
lem, or a tangential problem.

3. Monitoring HTML Form Element Access
on 100,000 Websites

With all the proposed countermeasures and remedies
discussed in the previous section, the question remains:
why has nothing stuck? Seemingly, all browser-based
projects have been abandoned, and research has shifted
its focus towards other fields over the course of a decade.
Third-party data exfiltration and abuse is still happening
on the web today. In this section, we focus on third-
party scripts and their interaction with user supplied PII to
empirically shed light on the complicated nature of third-
party scripts operating on user-supplied data in the wild.

3.1. Monitor

We implement a monitoring system within Firefox
(v.88, maintained through v.92) that allows the inspec-
tion of all JavaScript to DOM communication within a
web application. In more detail, this Monitor enables
investigation of every get() and set() operation on
DOM attributes which allows for deep inspection of every
third-party script accessing DOM elements. Our generic
implementation can capture all synchronous third-party
JavaScript to DOM communication, regardless of how
the attribute value is set. In more detail, our Monitor
captures and monitors every form of setting an attribute,
ranging from element.setAttribute() all the way
to assigning a value using attribue.value=.

DOM

Script Access
Monitor

JS

Email:

Password:

Submit

Figure 1: JavaScript to DOM Monitor to inspect, intercept
and monitor all get() and set() methods on DOM
Elements within a web application.

Loading a top-level page (i.e., the top-level HTML
document [73]) and including third-party JavaScript into
the same execution context grants the script the same
capabilities as if the script is loaded from the same ori-
gin as the main application. As illustrated in Figure 1,
our Monitor, which is implemented in the autogenerated
DOM-Bindings, sits right between the JavaScript engine
and the DOM. Our Monitor inspects the actual origin of
the third-party script. Applying semantics of the same-
origin-policy [74] precisely identifies what information
the third-party script operates on. For this work, we focus
on third-party JavaScript accessing HTML Form Elements
because those commonly contain highly-sensitive user PII
which highlights the problematic access situation.

3.2. Inspector

To utilise the aforementioned Monitor, we implement
a web crawler to expose script behavior on sites. Our
crawler (code available here: https://gitlab.com/swsprec/
sok-allornothing) is implemented using Selenium [8] to
drive user-like form interactions on top of our Monitor.
This enables the capture of any element access and any
kind of form access before and after forms are submitted.
On each site, the crawler first looks for a form; if none
is found, it will go visit five internal pages found from
links presented on the landing page. These links are sorted
and selected using a manually curated list of keywords
identifying pages most likely containing forms. Once a
form is found, we employ a similar method to Acar et al.’s
bait technique [2] to induce script behavior. This tech-
nique supplies the appropriate input to HTML forms and
input fields which are the main pathway for websites to
query information from users. Generally, users supply PII
through common form elements such as <textarea>,
and <input> [75]. The more flexible <input> is of
particular interest because of the vast number of input
types it supports, such as email, password, tel,
and text [76]. Our Inspector handles all these possible
input forms, and supplies the relevant data for each. We
determine what each form input field is asking for, either
by the input type [76] or by keyword hints in the HTML
element attributes, and check that the field is visible to
the user. Finally, our Inspector simulates a user typing the
response from our user data global configuration and it
attempts to submit the form.

3.3. Measurement Ethics

Since our measurement involves actively interacting
with webpages, it is important that we do so as ethical
Internet citizens. We closely follow all the guidance set
out in prior research and the Menlo Report [77]. We rate
limit, scan infrequently, maintain a “no-scan” list and the
ability for sites to opt-out, and host an informative study
splash page on the scan server.

3.4. Infrastructure

Our measurement was carried out on AWS in us-
central1-a on a e2-standard-32 with 32 vCPUs and 128
GB of memory. The scan server was running Ubuntu 18.04
LTS with 4 TB of persistent disk, as well as hosting
our scan splash page with an Apache web server. The
measurement began in late 2020 and lasted five days.

3.5. Input List

We crawled 100,000 websites from the Tranco ranking
list [78] created in late 2020. To observe both high traffic
and low traffic sites, we sampled similarly to previous
work [2] as follows: all of the top 30,000 sites; a 30,000
random sample from ranks [30,000 - 100,000); a random
sample of 40,000 sites from ranks [100,000 - 1,000,000).

210

Figure 2: Tranco ranking and website categories of sites positively attributed to have a third-party script operating on
bait PII.

3.6. Sites Interacted with and Baited

Of the 100,000 websites crawled, only 76,238 sites
had a form our crawler identified. Sites which had forms
but no injected bait PII account for 39,939 sites, 11,311
of which had an error, and the remaining had hidden
input fields (our crawler ignores these by default). Of
the sites with errors, 6,333 were timeouts, 3,650 were
webdriver exceptions and the remaining 1,328 errors were
from exceptions including stale element references, click
interceptions, elements not interactable, unexpected alerts,
and other unexpected behavior.

Our Inspector interacted and input PII on 36,299 sites.
After combining our Inspector logs with our filtered Mon-
itor data, we were left with 12,638 sites on which we
positively attributed third-party scripts operating on our
bait PII. This filtering is further explained in Section 3.7.
These 12,638 sites are distributed almost identically over
the input list buckets and the initial input list as seen in
Figure 2.

Figure 2 reports on the category of these sites and their
respective breakdowns over the input buckets described
above. We categorized websites using Fortiguard [79], and
report the top five categories of Business, Information
Technology, Education, News and Media, and Shopping
plus Uncategorized and Long Tail Miscellaneous sites.

Long Tail Miscellaneous contains 86 different cate-
gories of web applications, with their prevalance decaying
exponentially. It is important to note that this distribution
is not meant to be extrapolated as representative of the
wider Internet, but rather it shows two important facts.

First, third-party scripts that access user PII can be
found on many different categories of sites indicating this
issue is spread out over the Internet.

And second, there exists a long tail of categories
reinforcing the idea that this issue is pervasive regardless
of web application function.

3.7. Data Filtering from the Monitor

We process our data in multiple stages in order to
reveal what is happening on sites.

Stage 0 - The Monitor filters in accordance with the
SOP, thus it logs any script access not from the same
origin performing a get() or set() method on the main
application.

Stage 1- Logs are verified for valid JSON, and we
prune extraneous Selenium log statements from the In-
spector.

Stage 2 - We utilise the public suffix list [80] to extract
hostnames from third-party URLs and map them to their
parent entity using DuckDuckGo’s Tracker Radar [81].
For example, if a script originating from doubleclick.com
accessed the login field on firebase.com, both domains are
Google owned properties, so we treat them as first party
scripts.

Stage 3 - We filter logs for requests that contain the
PII we injected as bait. The Monitor logs the value of the
element being accessed, so we search for matches with
supplied PII in the scan’s global configuration.

On Our Data: We do not aim to present ground truth
about the distribution of third-party scripts, but rather to
investigate the complexity added to the problem through
their vast differences. To this effect, our system has false-
negatives, and our methods of identifying similar scripts
are not exhaustive. We have no false positives, as our
Monitor has a perfect view of all operations on fields,
though we leave out scripts that utilise innerHTML to
access data for parsing simplicity and fail to attribute
some operations due to domain mismatching between the
Monitor and Inspector. We only report on scripts that
operated on our bait user PII, and that we can attribute
through the combination of our Monitor and Inspector.

Script Consolidation: We compute a SHA1 hash of
each third-party script encountered in order to combine

211

TABLE 1: Password field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

https://s.pinimg.com/ct/lib/main.2424edb5.js Action Tracking

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

cloudflare.com CDN

TABLE 2: User field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

https://cdn.permutive.com/...-web.js Modeled Ad Targeting

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

TABLE 3: Email field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

https://s.pinimg.com/ct/lib/main.2424edb5.js Action Tracking

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

scripts that are identical but hosted by different sources.
We download scripts at a different time than our scan,
therfore our hashing method is not exhaustive. We modi-
fied third-party script URLs for presentation (e.g., “...” in
URLs).

3.8. Script Categorization

We manually categorize the top third-party scripts
and their hosting domains by domain expertise, respec-
tive technical documentations, and marketing materials.
Scripts and Domains fit the categories detailed in Table 5.
Categories range from the security benefits of Abuse Miti-
gation scripts, to privacy violating Session Replay scripts,
to seemingly neutral Helper Library scripts. We see the
full range of these categories operating on the password,
username, and email fields as shown in Tables 1, 2, 3.
Another issue that solutions must successfully overcome
is the varied use cases of scripts. While some scripts in
privacy violating categories could be outright blocked,
as most are by privacy preserving browser extensions, a
blanket solution of removing third-party access would re-

move the benefits users gain through collaterally disabling
those scripts as well. Complicating the matter further,
scripts in categories similar to Helper Library could be
utilized by other scripts for both good and bad uses.
This demonstrates the need for solutions to be able to
discriminate on these actions on the per-action level and
not on the per-script level.

3.9. Script Discrimination On User Input

Table 4 reports which third-party scripts operate the
most on our supplied user PII, and if they either in-
discriminately grab all available user PII or discriminate
over what fields they operate on. Scripts listed as Never
discriminates are those who operate on all available PII,
while those listed as Sometimes discriminates have been
seen to operate on some subset of available PII, not all.

Scripts that Sometimes discriminate on PII
could be thought of as less privacy violating, since
they show restraint, yet we see an immediate
counter example in yandex.ru/.../tag.js.
This script Sometimes discriminates because it is

212

TABLE 4: Top scripts discrimination, category, and unique input sets operated over

Script Discriminates Category Unique PII

https://www.gstatic.com/.../recaptcha en.js Sometimes Abuse Mitigation 346

JQuery Sometimes Helper Library 182

https://mc.yandex.ru/metrika/tag.js Never UBA / Session Replay 59

https://mc.yandex.ru/metrika/watch.js Sometimes UBA / Session Replay 50

https://s.pinimg.com/ct/lib/main.2424edb5.js Never Action Tracking 38

https://s.adroll.com/j/sendrolling.js Never CRM / Email Marketing 62

https://js.hscollectedforms.net/collectedforms.js Never CRM 50

https://js.hsforms.net/forms/current.js Also v2.js Never CRM 32

https://s3.amazonaws.com/downloads.mailchimp.com/js/mc-validate.js Never CRM / Email Marketing 14

Marketo forms2.min.js Sometimes Form Builder / CRM 23

...

https://assets.squarespace.com/.../common-...-min.en-US.js Never Website Builder 5

...

TABLE 5: Script categories

Categories Description

Abuse Mitigation Identify and secure against bots and site
abuse

Action Tracking Capture user interactions and event track-
ing like ”Checkout” and ”AddToCart”

Content Delivery
Network (CDN)

Provide availability and performance
through distributed servers

Customer
Relationship
Management (CRM)

Collect data for managing interactions
with customers such as follow-up emails

Data Aggregator Collect data on users of many different
types

Email Marketing Focus on CRM through email manage-
ment

Form Builder Allow to build custom forms

Helper Library Provide functionality to website develop-
ers

Session Replay Record all user interactions for the pur-
pose of enabling website owners to replay
a live session to the same end of UBA

Static Files Serve static, generally unchanging files

User Behavioral
Analysis (UBA)

Capture user interaction with a site to illu-
minate user behavior for website owners

Website Builder Development aid and display of a website

meant to be included on any site with little to
no integration, and thus will not have full access
unlike its counterpart yandex.ru/.../watch.js.
Conversely, scripts that Never discriminate on
PII could be thought of as primarily privacy

violating, yet we see yet another counter example in
assets.squarespace.com/.../common-....js.
This script Never discriminates on PII, but is mainly
used for assisting website developers with additional
functionality, yet it is third-party to the main page.

Seeing scripts behaving this way presents yet another
hurdle for solutions in this space to content with. We see
that some forms of behavioral analysis do not lend clear
cut answers to the intentions of these scripts. Solutions
need to be more sophisticated and judicious than solely
relying on behavioral indicators such as input discrimina-
tion, though they can certainly benefit from utilizing things
like this to determine the reputation of a particular script
indicating the need for further in-depth investigation.

Table 4 also shows the number of unique PII combina-
tions that scripts are seen in the presence of. For example,
a script could be seen on a page where email and password
were baited, and also on a page where email, password,
and telephone number were baited. These two pages have
a unique set of PII, which shows the flexibility and
variability of environments scripts are operating in. This
makes the discrimination classification of Never worse,
since these scripts operate on all the PII they have access
to with great flexibility.

3.10. Script Diversity and Complexity

For a full listing of top scripts and top script sources
that operate on specific user PII fields, refer to Ap-
pendix A. It is clear there are many different types of
use cases for scripts to operate on user PII. We see
subtle differences between the types of scripts operating
on different PII fields, but script uses across Tables 1, 2, 3
remain fairly consistent.

When thinking in a security mindset, we would
expect a field as sensitive as the password field to
be more protected than others. Despite our secu-
rity hopefullness, Table 1a shows use cases including
gstatic.com/.../recaptcha__en.js providing

213

security features, JQuery making element access simpler
to an unknown end, and yandex.ru/.../tag.js
which is used for UBA and Session Replay tracking. The
top source domains for these password operating third-
party scripts show a similar picture despite the more
coarse-grained view it provides. Table 1b combines all
URLs from gstatic.com into one line item, which is
categorized as a domain that serves static files. A majority
of these files are recaptcha__en.js, but the domain
itself serves other purposes as well. It is evident that for a
solution to be successful, it must contend with this extra
complexity.

3.11. Summary and Key Takeaways

All of the above use cases confirm the convoluted
nature for granting third-party scripts access to the main
application, and endorse that there is no straightforward
solution to overcome such a complex problem. We have
seen that solutions need to be able to decide on a per-
action basis if something should be allowed in order to
have a perfect defense, and that simple heuristics cannot
address these issues successfully alone. Our measure-
ment also shows that these scripts are extremely preva-
lent on many different types of websites, indicating their
widespread use, and the need for deployable soltuions for
users.

4. Solution Rubric and Applications

We have gained many insights into what makes so-
lutions viable or not through our related work deep dive
and measurement thus far. In this section, we leverage
these insights to propose a way to systematize and grade
the potential success and efficacy of proposed solutions to
secure users against third-party PII access and exfiltration,
completing our postmortem.

Table 6 applies the grading rubric to most relevant
solutions covered in Section 2.

4.1. Rubric Items

In this section we detail each rubric item, how to score
a technique, and how our insights have lead to these items.

Level of Control: This item serves to indicate the amount
of visibility and control a solution has in the browser
and or JavaScript engine. Typically, this is thought of as
coarse-grained versus fine-grained control over a system.
In our application, it is important to distinguish between
control over script-level or action-level. A solution that
has script-level controls can only allow or disallow an
entire script from running, whereas a solution with action-
level controls can allow scripts to run benign behavior and
disallow only malicious actions.

Scores: [action-level, in between, script-level]

Application: Determining what grade to give a particular
solution is based on the amount of control it provides.

Motivation: It was made evident by our measurement
that defense techniques are highly subject to the level of
control they are able to operate with. Our measurement

showed a diverse landscape of script activity, indicating
that the level of control solutions have factors heavily into
the benefit they can provide on the modern Web.

Ease of Deployment: We have seen techniques fail to be
adopted because of the difficulty deploying the solution
in the real world. This complexity relates to the number
of parties needed to make changes, and the complexity of
these changes. Solutions that require browser developers,
web application developers, and users to fully deploy are
much more difficult than solutions that are solely in the
browser.

Scores: [single party, single complex, multiple

easy, multiple parties]

Application: The only subjective part of this grading lies
in the complexity of deployment. This determination will
be guided by the level of technical prowess required plus
quantity of work.

Motivation: Our review of previously proposed solutions
saw that the more complicated deployment schemes were,
no matter how effective the solution, the less likely they
were to be adopted in the long run indicating its impor-
tance in the success of a solution.

Maintainability: This rubric item is very similar to Ease
of Deployment, but instead of deployment, it focuses on
the potential effort in keeping the solution up to date over
time and platform changes. If a technique is too difficult
to successfully maintain while the underlying product
evolves, it is never adopted.

Scores: [stable, in between, volatile]

Application: The location of the technique determines
the score for this rubric item. For example, if a solu-
tion is spread out over multiple parts of the browser
that change somewhat frequently, than it would be quite
volatile. Whereas solutions that are fully self-contained in
a single area of code that is generally stable, updating and
maintaining the technique over time will be significantly
easier.

Motivation: An important factor in any software system
that is deployed is the ease of maintaining that system.
Industry has shown, by abandoning projects discussed
earlier, if they asses the costs of a solution higher than the
benefits a solution is abandoned. Thus, a successful system
will be one that weighs its costs carefully, maintainability
being one key component of that.

Developer Overhead: When web application developers
have to expend a lot of effort to apply solutions, we see
almost no adoption. This problem is exacerbated if current
web applications need to be rewritten in order to take
advantage of the new benefits.

Scores: [no effort, tool assisted, some manual

effort, full rewriting]

Application: Grading this rubric item is straightforward, if
there is a tool to assist developers in enacting a technique
or with policy expression, then they fall into that category,
otherwise the other grades are applied respectively.

214

TABLE 6: Rubric for solutions to the third-party script inclusion permission model

Solutions Level of
Control

Ease of
Deployment Maintainability Developer

Overhead
Performance

Overhead

Backwards
Compatibility

and Functionality

Level of
Security

End User
Usability

Isolation and Confinement §2.4

JaTE - JavaScript Confinement [40]

Isolation by Static Rewriting [41]–[44] †

Information Flow Control §2.5

Dynamic Data Tainting
and Static Analysis

[4] N/A

OMash - Object Abstractions [50] † † †
BFlow [51] † † †

ConScript [6] †
FlowFox - Secure mulit-execution [54] †

Flexible Access Control [56]

WebKit Information Flow [57]

IFC with Just-In-Time Compilation [58]

JSFlow [60] †
COWL [3]

CrowdFlow [61]

JEST [63] †

Other Approaches §2.6

ScriptProtect [66]

Injecting CSP [69]

Level Of
Control

Ease of
Deployment Maintainability Developer

Overhead
Performance

Overhead

Backwards
Compatibility

and Functionality

Level of
Security

End User
Usability

– action-level – single party – stable – no effort – no noticable - 15% –
protects backwards with
some breakage or additional work

– full – no skill

– in between – single complex – in between – tool assisted – 15% - 50% –
protects in place and
ignores legacy applications

– partial – low skill

– script-level – multiple easy – volatile – some manual effort – 51% - 100% – breaks sites – introduces new flaws – medium skill

† – multiple complex † – full rewriting † – not reported - 101%+ † – advanced skill

Motivation: The reason that XSS is still one of the most
pervasive vulnerabilities on the Web today is that the onus
of solution lies on each individual web developer. For a
solution to be adopted in the modern Web, the amount of
Developer Overhead incurred has a significant role in the
cost benefit calculation industry must go through. We see
many of the studied solutions in Section 2 incur developer
effort, factoring into their failure to be adopted.

Performance Overhead: One of the biggest killers of
solutions lies in the overhead they add to the browsing
of users. It is clear that browsers and web application
developers are sensitive to slowdowns of any nature, and
thus the successful adoption of a technique is very closely
tied to performance overhead.

Scores: [no noticeable - 15%, 15% - 50%, 51% -

100%, not reported - 101%+]

Application: Different techniques report their overhead
differently, so this section is meant as a best effort determi-
nation. The base to measure overhead on top of is relative
to the technique, but the effect is ultimately the same

thing, where operations either in a JavaScript engine, or
browser, or elsewhere are slowed down affecting upstream
performance.

Motivation: Many of the proposed solutions in our survey
have fantastic promises of perfect visibility into script
action, yet suffer from tremendous performance overhead.
Despite the field looking to lower the performance over-
head over the years through innovated changes, many of
the solutions still slow down performance significantly.
Browser vendors and users are typically very sensitive to
performance hits, making it an important part of the cost
benefit analysis to a solution.

Backwards Compatibility and Functionality:
Techniques have been seen to break functionality
of websites, particularly those that outright block scripts
from running, or disallow JavaScript entirely. The
web community is particularly sensitive to maintaining
backwards compatibility, and maintaining users ability
to access sites without developers having to constantly
update their codebases. For solutions to stand much

215

chance they need to take this into account. The best
solutions are those that can provide a level of protection
for sites that have not been updated as well.

Scores: [protects backwards with some breakage or

additional work, protects in place and ignores

legacy applications, breaks sites]

Application: The application of grades here is straightfor-
ward, for solutions that only apply to sites that deploy a
change, they fall into the protects in place and ignores
legacy application grade, whereas if it provides benefit to
all sites, it can be said to protect backwards.

Motivation: As previously mentioned, the web community
is very sensitive to maintaining backwards compatibil-
ity. The solutions in our survey generally acknowledge
this and attempt to account for it when presenting their
solutions, making it clearly an important factor when
evaluating techniques.

Level of Security: This rubric item denotes how much
protection is provided to a user under a specified tech-
nique. If a user is fully protected from third-party scripts
misusing their data, that particular solution can gain trac-
tion for deployment. If a solution only provides protection
in certain cases, there is less reason to cope with any other
drawbacks.

Scores: [full, partial, introduces new flaws]

Application: If a technique itself introduces a new vulnera-
bility, which we have heard of anecdotally, whole projects
in industry tend to be abandoned when taking into account
the other items of this rubric. The rest of the items are
self explanatory.

Motivation: Ultimately, the level of security a solution
in the space provides is the benefit in the cost benefit
analysis done by industry. We observed in our survey
that some industry attempted solutions had either mixed
benefits to security, or even introduced flaws, leading to
their abandonment. Our measurement also gave insight
that with such a complex ecosystem, differing levels of
security depending on the use case could be acceptable,
making it clear as a valuable part in evaluating techniques.

End User Usability: The skill level required to deploy
and use effectively on the users end ultimately makes or
breaks the wide-spread adoption of any techniques.

Scores: [no skill, low skill, medium skill,

advanced skill]

Application: An advanced user can complete complex
tasks such as setting up proxies, or interfacing directly
with code. Medium skill can be considered tasks like
tweaking settings directly, and low skill can be actions
similar to installing a browser extension.

Motivation: Many works in our survey purposefully target
solutions without much end user interaction. Those that
do, make a concerted effort to minimize the requirement
on users, stressing its importance to the community, and
in getting anything adopted at scale. Thus, end user us-
ability is valuable to account for when looking at solution
techniques.

4.2. Key Takeaways

It is clear from Table 6 that no single proposed solution
is without trade-offs. There are many reasons why each
of these techniques has to make these trade-offs, yet the
fact that none of them have been adopted for users to
benefit from indicates that either they are not making the
proper trade-offs, or they are not acceptable enough for
deployment. The only class of solutions that were de-
ployed commercially at any point were the Isolation
by Static Rewriting solutions, and we see they
sacrificed security for usability, ease of deployment, and
low developer overhead. Other solutions in this space fo-
cus on providing a very high level of security but fall short
in overhead, ease of deployment, and maintainability.

It appears that to be able to sell an idea, minimizing
back end costs (development effort, overhead, deployment,
etc.) helps, but if it cannot deliver enough security for
users, ultimately the hassle is not deemed worth it.

An ideal solution would not have to make any trade-
offs, which is generally an impossibility, but in order
to afford users any semblance of protection, a solution
should try and maximize back end simplicity in order to
see adoption. Ultimately, some protection in this space is
better than none.

While IFC provides the best protection for users, it
is generally uncompromising when it comes to back end
costs. We see some solutions making headway on reducing
performance overhead, but the field has been dormant for
the last few years with no commercial solutions available
for users.

Looking at solutions from the angle of feasibility
for adoption, it would be beneficial to move trade-off
decision making to end users instead of browsers and
web application developers. The value analysis of tools
varies drastically between these parties and could be used
to provide more benefit to those parties who desire it.
Thus, a possible new avenue for solutions in this vein lies
in leveraging deep introspection hooks similar to Virtual
Machine Introspection (VMI) to provide an interface for
the community to decide their own trade-offs. We discuss
directions for future work further in Section 5.

5. A Path Forward

Currently, all web based applications have to find a
compromise between granting third-party scripts full ac-
cess or no access to application internals. We have shown
that it is almost impossible for web application developers
to find the right balance between taking advantage of the
interoperability of the modern web while simultaneously
not putting end users’ security and privacy at risk.

In Section 2 we have shown that no proposed solution
addresses all trade-offs sufficiently, and so far none of
the proposed solutions have found adoption in any of the
mainstream web browsers in industry. Solutions struggle
to navigate between slowing down runtime, adding oner-
ous developer effort, scaling poorly, and lacking back-
wards compatibility. Browser vendors are not going to
compromise when it comes to many of these trade-offs,
particularly when it comes to trading performance for
“slightly” improved security and privacy. None of the
proposed approaches provide bulletproof evidence that

216

TABLE 7: Rubric application for future direction solution

Solutions Level of
Control

Ease of
Deployment Maintainability Developer

Overhead
Performance

Overhead

Backwards
Compatibility

and Functionality

Level of
Security

End User
Usability

Deep Hooks and addon Choice Choice Choice

they actually stop privacy violations or at least prevent
user data exfiltration in an industry acceptable fashion.

Our measurements in Section 3 further highlight the
complexity of third-party script behavior operating on
user supplied PII. As we have shown, script access on
user PII ranges from clearly positive security features,
to privacy violating session recordings. Simple coarse-
grained solutions, such as isolating the password field,
will not work in a space this complex with such varied
use cases.

We combine these insights into a new systematization
and way to evaluate technical solutions in Section 4. It
is clear that previous solutions have their own failings
resulting in lack of commercialization, but a path forward
is illuminated.

A clear solution lies in allowing tools to be built
that distribute the power of making access decisions. By
looking at browsers as complex software systems akin
to operating systems, deep introspection hooks similar
to VMI present an interesting model. We argue that the
research and web community needs to be empowered to
build prototypes, probably in the form of addons to inspect
and monitor third-party JavaScript accessing and operating
on PII.

We note that implementing and maintaining our Mon-
itor over multiple Firefox versions has resulted in man-
ageable effort. Browser vendors could theoretically expose
similar APIs which would ease the creation of research
prototypes. Such monitoring APIs would allow the com-
munity to conduct studies, implement their own solutions,
and could even empower end users to make their own
decisions about which third-party they trust or do not trust
to operate on their PII.

For the solution of deploying deep introspection hooks
and an addon, we apply our rubric as shown in Ta-
ble 7. The Level of Control with this technique enables
monitoring at the action-level, Ease of Deployment
is rated as multiple easy since solutions need an
addon, plus browser modification which we have done
with our Monitor. Maintaining our Monitor has resulted in
manageable effort, as we placed our hooks well, allowing
for the grade of stable. As web application developers
do not need to make any changes, and just a single
addon needs to be developed, Developer Overhead is no
effort. Performance Overhead, Backwards Compatibil-
ity and Functionality, and the Level of Security are all left
up to choice. The user and addon get to choose what they
are willing to give up in these three domains, and since
end users need only to install an addon End User Usability
is graded low skill. A solution as this minimizes back
end effort and decisions to aid in adoption, while allowing
costs to be decided and incurred by only those parties
desiring solutions.

As an example of an analogous problem and suc-
cess story we argue that the famous browser extension

HTTPS Everywhere [82] was released in 2014, but it was
only just recently, in late 2020 that Mozilla integrated
an HTTPS-Only Mode [83] into Firefox. We argue that
HTTPS Everywhere sufficiently highlighted the benefits
which finally allowed browser vendors to incorporate such
a solution. We further argue that it will take monitoring
systems which similarly allow inspection of third-party
script accessing end user PII to facilitate adoption.

Ultimately, end users have the right to transparency
over how their PII is being handled. We think that pro-
viding hooks for deep inspection is a viable way forward
to generate transparency without forcing end users to ran-
domly trust any third-party scripts that a web application
pulls together to create a service.

6. Conclusion

Currently, the web execution model allows sites to
leverage third-party JavaScript in a single execution con-
text. Despite the knowledge that this execution model
allows privacy violations and user data exfiltration, the
general model has been unchanged for over a decade.

We have presented a postmortem of solutions attempt-
ing to overcome the all or nothing permission model
of current web and browser architecture. We evaluated
proposed solutions, discussed their trade-offs, and ex-
plained the lack of industry adoption of all of the proposed
solutions. We further created a Monitor in the Firefox web
browser which allows for the capture of third-party script
access of user supplied PII in HTML Form Elements.
By inspecting 100,000 websites using our Monitor and a
custom web crawler, we have emphasized the complexity
of use cases of third-party scripts operating on user PII.

We then leverage our insights to present a novel
systematization and grading rubric for solutions in this
space, apply it to notable solutions, and draw informed
conclusions from it.

In summary, we adhere that trade-offs between over-
head, user requirements, security flaws, backwards com-
patibility, and site breakage are complicated to navigate.
Our findings suggest that browsers could offer interfaces
for deep inspection of third-party script access PII in the
main application. We believe that such interfaces would
allow the community to close the gap between the all
or nothing inclusion model, and would enable informed
decisions for web application developers and end users.

Acknowledgements

The authors are grateful to Giancarlo Pellegrino for
shepherding the paper, to Emily Kubik, Mark Melendy,
Bahruz Jabiyev, Dakota, and the anonymous reviewers
for their constructive feedback. This work was partially
funded by the National Science Foundation grant CNS-
1703454, by Secure Business Austria, and by a travel
grant from Mozilla Corporation.

217

References

[1] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “You are what
you include: Large-scale evaluation of remote javascript inclu-
sions,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2012.

[2] G. Acar, S. Englehardt, and A. Narayanan, “No boundaries: data
exfiltration by third parties embedded on web pages,” Proceedings
on Privacy Enhancing Technologies, 2020.

[3] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman,
B. Karp, and D. Mazières, “Protecting users by confining javascript
with cowl,” in Proceedings of the USENIX Symposium on Operat-
ing Systems Design and Implementation, 2014.

[4] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data
tainting and static analysis.” in Proceedings of the Network and
Distributed System Security Symposium, 2007.

[5] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “Tain-
tEraser: protecting sensitive data leaks using application-level taint
tracking,” ACM SIGOPS Operating Systems Review, 2011.

[6] L. A. Meyerovich and B. Livshits, “Conscript: Specifying and en-
forcing fine-grained security policies for javascript in the browser,”
in Proceedings of the IEEE Symposium on Security and Privacy,
2010.

[7] W3C, “Document Object Model (DOM),” http://www.w3.org/TR/
2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.pdf, 2004.

[8] Selenium, “Selenium,” https://www.selenium.dev, 2004.

[9] C. Yue and H. Wang, “Characterizing insecure javascript practices
on the web,” in Proceedings of the World Wide Web, 2009.

[10] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An em-
pirical study of client-side javascript bugs,” in Proceedings of the
IEEE International Symposium on Empirical Software Engineering
and Measurement, 2013.

[11] C. Kerschbaumer, T. Ritter, and F. Braun, “Hardening firefox
against injection attacks,” in Proceedings of the IEEE European
Symposium on Security and Privacy Workshops. IEEE, 2020.

[12] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the web tan-
gled itself: Uncovering the history of client-side web (in)security,”
in Proceedings of the USENIX Security Symposium, 2017.

[13] T. van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and
W. Joosen, “Large-scale security analysis of the web: Challenges
and findings,” in Proceedings of the International Conference on
Trust and Trustworthy Computing, 2014.

[14] N. Bielova, “Survey on javascript security policies and their en-
forcement mechanisms in a web browser,” The Journal of Logic
and Algebraic Programming, 2013.

[15] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the inco-
herencies in web browser access control policies,” in Proceedings
of the IEEE Symposium on Security and Privacy, 2010.

[16] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson,
and E. Kirda, “Thou shalt not depend on me: Analysing the use
of outdated javascript libraries on the web,” in Proceedings of the
Network and Distributed System Security Symposium, 2017.

[17] Y. Zhou and D. Evans, “Understanding and monitoring embedded
web scripts,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2015.

[18] J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser moni-
toring of javascript in the wild,” in Proceedings of the Internet
Measurement Conference, 2019.

[19] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A.
Halderman, and M. Bailey, “Security challenges in an increasingly
tangled web,” in Proceedings of the World Wide Web Conference,
2017.

[20] M. Ikram, R. Masood, G. Tyson, M. A. Kaafar, N. Loizon, and
R. Ensafi, “The chain of implicit trust: An analysis of the web
third-party resources loading,” in Proceedings of the World Wide
Web Conference, 2019.

[21] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical
study of privacy-violating information flows in javascript web
applications,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2010.

[22] O. Starov, P. Gill, and N. Nikiforakis, “Are you sure you want
to contact us? quantifying the leakage of pii via website contact
forms,” Proceedings on Privacy Enhancing Technologies, 2016.

[23] S. Van Acker, D. Hausknecht, and A. Sabelfeld, “Measuring login
webpage security,” in Proceedings of the Symposium on Applied
Computing, 2017.

[24] B. Krishnamurthy and C. Wills, “Privacy diffusion on the web: a
longitudinal perspective,” in Proceedings of the World Wide Web
Conference, 2009.

[25] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[26] WHATWG, “HTML Living Standard - The iframe element,”
https://html.spec.whatwg.org/multipage/iframe-embed-object.
html#the-iframe-element, 2021.

[27] W3C, “Cross-Origin Resource Sharing,” http://www.w3.org/TR/
cors, 2010.

[28] W3C, “Content Security Policy,” http://www.w3.org/TR/CSP2/,
2014.

[29] S. Van Acker, D. Hausknecht, and A. Sabelfeld, “Data exfiltration
in the face of csp,” in Proceedings of the ACM Asia Conference
on Computer and Communications Security, 2016.

[30] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is csp
failing? trends and challenges in csp adoption,” in Research in
Attacks, Intrusions and Defenses, 2014.

[31] WHATWG, “HTML, 9.4.3 Posting messages,” https://html.spec.
whatwg.org/multipage/web-messaging.html, 2020.

[32] C. Jackson and H. J. Wang, “Subspace: Secure cross-domain
communication for web mashups,” in Proceedings of the World
Wide Web Conference, 2007.

[33] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshi-
hama, “Smash: Secure component model for cross-domain
mashups on unmodified browsers,” in Proceedings of the World
Wide Web Conference, 2008.

[34] A. Barth, C. Jackson, and J. C. Mitchell, “Securing frame com-
munication in browsers,” Proceedings of the USENIX Security
Symposium, 2008.

[35] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan, “Adjail:
Practical enforcement of confidentiality and integrity policies on
web advertisements,” in Proceedings of the USENIX Security Sym-
posium, 2010.

[36] J. Terrace, S. R. Beard, and N. P. K. Katta, “Javascript in javascript
(js.js): Sandboxing third-party scripts,” in Proceedings of the
USENIX Conference on Web Application Development, 2012.

[37] L. ingram and M. Walfish, “Treehouse: Javascript sandboxes to
help web developers help themselves,” in Proceedings of the
USENIX Annual Technical Conference, 2012.

[38] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens, “Jsand: Complete client-side sandboxing of third-
party javascript without browser modifications,” in Proceedings of
the Computer Security Applications Conference, 2012.

[39] D. Akhawe, F. Li, W. He, P. Saxena, and D. Song, “Data-confined
html5 applications,” in European Symposium on Research in Com-
puter Security, 2013.

[40] T. Tran, R. Pelizzi, and R. Sekar, “Jate: Transparent and efficient
javascript confinement,” in Proceedings of the Computer Security
Applications Conference, 2015.

[41] Google, “Caja: The Caja Compiler is a tool for making third party
HTML, CSS and JavaScript safe to embed in your website.” https://
github.com/googlearchive/caja, 2020.

[42] Adsafe, “Adsafe: Making JavaScript Safe for Advertising,” https://
www.adsafe.org/, 2021.

[43] Microsoft, “Microsoft Web Sandbox,” https://web.archive.org/web/
20120625221655/www.websandbox.org/, 2012.

218

[44] Facebook, “Facebook JavaScript,” https://web.archive.org/web/
20120104194744/http://developers.facebook.com/docs/fbjs/, 2012.

[45] S. Van Acker and A. Sabelfeld, “Javascript sandboxing: Isolating
and restricting client-side javascript,” in Foundations of Security
Analysis and Design VIII, 2016.

[46] D. E. Denning and P. J. Denning, “Certification of Programs for
Secure Information Flow,” Communications of the ACM, 1977.

[47] A. C. Myers, “JFlow: practical mostly-static information flow
control,” in Proceedings of the ACM Symposium on Principles of
Programming Languages, 1999.

[48] V. Simonet, “Flow Caml in a Nutshell,” in Proceedings of the
APPSEM-II workshop, 2003.

[49] E. Yang, D. Stefan, J. Mitchell, D. Mazières, P. Marchenko, and
B. Karp, “Toward principled browser security,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, 2013.

[50] S. Crites, F. Hsu, and H. Chen, “Omash: Enabling secure web
mashups via object abstractions,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2008.

[51] A. Yip, N. Narula, M. Krohn, and R. Morris, “Privacy-preserving
browser-side scripting with bflow,” in Proceedings of the ACM
European Conference on Computer Systems, 2009.

[52] M. Dhawan and V. Ganapathy, “Analyzing Information Flow in
JavaScript-Based Browser Extensions,” in Proceedings of the Com-
puter Security Applications Conference, 2009.

[53] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg,
“Saving the World Wide Web from Vulnerable JavaScript,” in
Proceedings of the International Symposium on Software Testing
and Analysis, 2011.

[54] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flow-
fox: A web browser with flexible and precise information flow
control,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2012.

[55] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C.
Mitchell, and A. Russo, “Hails: Protecting data privacy in untrusted
web applications,” in Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation, 2012.

[56] G. Richards, C. Hammer, F. Zappa Nardelli, S. Jagannathan, and
J. Vitek, “Flexible access control for javascript,” in Proceedings of
the ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications, 2013.

[57] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz, “Towards precise and efficient information flow control
in web browsers,” in Proceedings of the International Conference
on Trust and Trustworthy Computing, 2013.

[58] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz, “Information flow tracking meets just-in-time compi-
lation,” in Proceedings of the ACM Transactions on Architecture
and Code Optimization, 2013.

[59] J. Magazinius, D. Hedin, and A. Sabelfeld, “Architectures for
inlining security monitors in web applications,” in Proceedings of
the International Symposium on Engineering Secure Software and
Systems, 2014.

[60] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Track-
ing information flow in javascript and its apis,” in Proceedings of
the ACM Symposium on Applied Computing, 2014.

[61] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and
M. Franz, “Crowdflow: Efficient information flow security,” in
Proceedings of the Information Security Conference, 2015.

[62] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer, “Information
flow control for event handling and the dom in web browsers,” in
Proceedings of the IEEE Computer Security Foundations Sympo-
sium, 2015.

[63] A. Chudnov and D. A. Naumann, “Inlined information flow mon-
itoring for javascript,” in Proceedings of the ACM SIGSAC Con-
ference on Computer and Communications Security, 2015.

[64] D. Hedin, L. Bello, and A. Sabelfeld, “Value-sensitive hybrid infor-
mation flow control for a javascript-like language,” in Proceedings
of the IEEE Computer Security Foundations Symposium, 2015.

[65] B. Eich, “Flowsafe,” https://wiki.mozilla.org/FlowSafe, 2009.

[66] M. Musch, M. Steffens, S. Roth, B. Stock, and M. Johns, “Script-
protect: Mitigating unsafe third-party javascript practices,” in Pro-
ceedings of the ACM Asia Conference on Computer and Commu-
nications Security, 2019.

[67] H. J. Wang, X. Fan, J. Howell, and C. Jackson, “Protection and
Communication Abstractions for Web Browsers in MashupOS,”
ACM SIGOPS Operating Systems Review, 2007.

[68] D. Hausknecht, J. Magazinius, and A. Sabelfeld, “May i? - content
security policy endorsement for browser extensions,” in Proceed-
ings of the International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, 2015.

[69] C. Kerschbaumer, S. Stamm, and S. Brunthaler, “Injecting csp for
fun and security:,” in Proceedings of the International Conference
on Information Systems Security and Privacy, 2016.

[70] K. Nakhaei, F. Ansari, and E. Ansari, “Jssignature: eliminating
third-party-hosted javascript infection threats using digital signa-
tures,” SN Applied Sciences, 2020.

[71] S. Arshad, A. Kharraz, and W. Robertson, “Include me out: In-
browser detection of malicious third-party content inclusions,” in
Proceedings of the International Conference on Financial Cryp-
tography and Data Security, 2016.

[72] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon,
D. Franke, F. Fraser, G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi,
V. Subbiah, M. Backes, G. Pellegrino, and D. Boneh, “Fidelius:
Protecting user secrets from compromised browsers,” in Proceed-
ings of the IEEE Symposium on Security and Privacy, 2019.

[73] WHATWG, “HTML,” https://html.spec.whatwg.org/, 2020.

[74] IETF, “The Web Origin Concept,” https://tools.ietf.org/html/
rfc6454, 2011.

[75] M. D. Network, “Web forms – Working with user data,” https://
developer.mozilla.org/en-US/docs/Learn/Forms, 2021.

[76] M. D. Network, “The Input element,” https://developer.mozilla.org/
en-US/docs/Web/HTML/Element/input, 2021.

[77] D. Dittrich and E. Kenneally, “The Menlo Report: Ethical princi-
ples guiding information and communication technology research,”
U.S. Department of Homeland Security, Tech. Rep., 2012.

[78] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyn-
ski, and W. Joosen, “Tranco: A research-oriented top sites ranking
hardened against manipulation,” Proceedings of the Network and
Distributed System Security Symposium, 2019.

[79] FortiNet, “Fortiguard labs web filter,” https://fortiguard.com/
webfilter.

[80] Mozilla, “Public suffix list,” https://publicsuffix.org/, 2020.

[81] DuckDuckGo, “Duckduckgo tracker radar,” https://github.com/
duckduckgo/tracker-radar, 2021.

[82] EFF, “HTTPS:// Everywhere,” https://www.eff.org/
https-everywhere, 2014.

[83] C. Kerschbaumer, J. Gaibler, A. Edelstein, and T. van der
Merwe, “HTTPS-Only: Upgrading all connections to https in Web
Browsers,” in Proceedings of the Workshop on Measurements,
Attacks, and Defenses for the Web, 2021.

219

Appendix

TABLE 8: Age field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

https://www.google.com/.../cse element en.js Custom Search Engine

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

TABLE 9: City field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://fw.cdn.technolutions.net/.../base.js CRM (For Higher Ed)

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

https://maps.google.com/.../places impl.js Embedded Map

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

technolutions.net CRM (Higher Ed)

ajax.googleapis.com Helper Library

maps.googleapis.com Embedded Maps

TABLE 10: Company field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

Marketo forms2.min.js Form Builder / CRM

https://js.hsforms.net/forms/current.js CRM

https://cdn.bizible.com/scripts/bizible.js Marketing Attribution

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

marketo.com CRM

hsforms.net CRM

ajax.googleapis.com Helper Library

TABLE 11: First Name field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://js.hsforms.net/forms/current.js CRM

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

Marketo forms2.min.js Form Builder / CRM

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

hsforms.net CRM

googletagmanager.com UBA

220

TABLE 12: Full Name field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

https://js.hscollectedforms.net/collectedforms.js CRM

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

TABLE 13: Last Name field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://js.hsforms.net/forms/current.js CRM

Marketo forms2.min.js Form Builder / CRM

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

hsforms.net CRM

googletagmanager.com UBA

TABLE 14: Message field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

TABLE 15: State field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://s3...mailchimp.../mc-validate.js CRM / Email Marketing

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

https://maps.google.com/.../places impl.js Embedded Map

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

ajax.googleapis.com Helper Library

s3.amazonaws.com Cloud Storage

adroll.com CRM / Email Marketing

221

TABLE 16: Street1 field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://maps.google.com/.../places impl.js Embedded Map

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

maps.googleapis.com Embedded Maps

yandex.ru UBA / Session Replay

TABLE 17: Tel field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://js.hsforms.net/forms/current.js CRM

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

Marketo forms2.min.js Form Builder / CRM

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

yandex.ru UBA / Session Replay

jquery.com Helper Library

TABLE 18: Title field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://mc.yandex.ru/metrika/watch.js UBA / Session Replay

Marketo forms2.min.js Form Builder / CRM

https://mc.yandex.ru/metrika/tag.js UBA / Session Replay

(b) Top Script Hosting Domains

Domain Category

gstatic.com Static Files

facebook.net UBA / Data Aggregator

yandex.ru UBA / Session Replay

marketo.com CRM

ajax.googleapis.com Helper Library

TABLE 19: Zip field and top parties operating on it

(a) Top Scripts

Script Category

https://www.gstatic.com/.../recaptcha en.js Abuse Mitigation

JQuery Helper Library

https://fw.cdn.technolutions.net/.../base.js CRM (For Higher Ed)

https://s.adroll.com/j/sendrolling.js CRM / Email Marketing

https://maps.google.com/.../places impl.js Embedded Map

(b) Top Script Hosting Domains

Domain Category

facebook.net UBA / Data Aggregator

gstatic.com Static Files

ajax.googleapis.com Helper Library

technolutions.net CRM (Higher Ed)

googletagmanager.com UBA

222

