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Abstract—The idea of automatic software diversity is at least
two decades old. The deficiencies of currently deployed defenses
and the transition to online software distribution (the “App
store” model) for traditional and mobile computers has revived
the interest in automatic software diversity. Consequently, the
literature on diversity grew by more than two dozen papers since
2008.

Diversity offers several unique properties. Unlike other de-
fenses, it introduces uncertainty in the target. Precise knowledge
of the target software provides the underpinning for a wide range
of attacks. This makes diversity a broad rather than narrowly
focused defense mechanism. Second, diversity offers probabilistic
protection similar to cryptography—attacks may succeed by
chance so implementations must offer high entropy. Finally, the
design space of diversifying program transformations is large.
As a result, researchers have proposed multiple approaches
to software diversity that vary with respect to threat models,
security, performance, and practicality.

In this paper, we systematically study the state-of-the-art in
software diversity and highlight fundamental trade-offs between
fully automated approaches. We also point to open areas and
unresolved challenges. These include “hybrid solutions”, error
reporting, patching, and implementation disclosure attacks on
diversified software.

I. MOTIVATION

As modern society grows increasingly dependent on the
digital domain, adversaries abound in cyberspace. In spite of
the combined efforts of the security community, reports of
major software vulnerabilities that put millions of users at risk
continue to be the norm rather than the exception.

Whereas diversity provides protection and resilience in
nature, the commoditization of the computer systems has made
them increasingly homogeneous with respect to hardware,
operating systems, applications, and everything in between.
Homogeneity and standardization provide economies of scale,
consistent behavior, and simplify the logistics of distributing
programs. We therefore live in a software mono-culture.

Unfortunately, homogeneity has turned out to be a double-
edged sword [26]. An attacker can readily download an
identical copy of the commodity software running on their
victims’ systems and probe it for vulnerabilities. After turning
a vulnerability into an exploit, the attacker can target all systems
running copies of the vulnerable program. In other words, the
software mono-culture creates economies of scale for attackers,
too.

Artificial software diversity aims to increase the cost to
attackers by randomizing implementation aspects of programs.
This forces attackers to target each system individually, sub-
stantially raising the bar on mass scale exploitation. Without
knowledge of the program implementation hosted on a par-
ticular system, targeted attacks become significantly harder,
too.

The idea of protecting programs with artificially generated
diversity is at least two decades old [13]. However, compiler-
based software diversity has only recently become practical
due to the Internet (enabling distribution of individualized soft-
ware) and cloud computing (computational power to perform
diversification) [25]. These developments and the emergence
of code-reuse attacks renewed the interest in software diversity.
This has led to a large body of research that is in many ways
as diverse as the set of program variants they generate.

This paper systematizes the understanding of software
diversity1 as follows. First, we show the versatility of artificial
software diversity by surveying the range of relevant attacks.
Second, we provide the first systematic and unified overview of
existing diversification approaches. In particular, we character-
ize the four major properties of a diversification approach using
a consistent terminology: (i) what is diversified (Section III),
(ii) when and where diversification happens (Section IV), (iii)
how security is evaluated (Section V-A), and (iv) the resulting
performance overheads (Section V-B). Finally, we point to
open areas of research and challenge the belief that compiler-
based diversification is less versatile than binary rewriting
(Section VI).

II. TODAY’S SECURITY LANDSCAPE

Attackers and defenders in cyberspace engage in a continu-
ous arms race. As new attacks appear, new defenses are created
in response—leading to increased complexity in both cases. To
motivate a study of software diversity, we briefly summarize
the evolution and current state of computer security.

A. Taxonomy of Attacks

There is a large spectrum of attacks that an attacker can use
against a target, employing a wide range of low-level techniques.
We present the ones that are most relevant to automated software
diversity.

1) Information Leaks: Often, the attacker seeks to read
some sensitive program state he should not have access to. This
includes contents of processor registers, memory pages, process
meta-data, files, etc. Such information can be valuable to an
attacker by itself (e.g., credit card numbers, login credentials, or
other personal user information) or to further an on-going attack
(by locating protected objects in memory through a pointer
leak, or by reading encryption keys used to encrypt other
data). In general, information leaks are increasingly used to
overcome situations where attackers lack knowledge of program
internals [60], [9]. For example, information leaks help bypass
address space layout randomization in later stages of an attack.

1Research on multi-variant systems overlaps with software diversity. Diversity
can be studied in isolation, however. We do so due to space restrictions.
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a) Side Channel Attacks: We consider side channel
attacks as a category of information leaks. Whereas most
other information leaks are intrusive (using some exploit to
explicitly reveal program data in unintended ways), side channel
attacks infer internal program state in a black box manner
by analyzing the interactions between the program and its
outside environment. One common measurement used by these
attacks is timing; the attacker measures how the time between
externally-visible program events changes in response to some
stimulus applied by the attacker, and if the response is also
correlated with the value of some internal program variable.
Many types of stimuli are available to an attacker, such as
memory or cache pressure.

2) Memory Corruption Attacks: The attacker often needs to
modify the internal program state located in memory. This can
be either the end-goal of the attack or an intermediate step (for
example, an attacker may seek to modify a function pointer to
hijack program control flow). This class covers a large variety
of techniques that use programming errors to achieve the same
goal: changing the memory contents of the target program.

a) Buffer Overflows: These attacks are a popular instan-
tiation of memory corruption attacks. In a buffer overflow, the
attacker writes data outside of the bounds of a memory buffer
to corrupt memory adjacent to that buffer. This approach is only
viable in languages without bounds checking. This attack is
most often applied to stack buffers, but it also works effectively
on buffers stored on the program heap.

b) Memory Allocator Exploits: Such exploits rely on the
predictability and performance constraints of memory allocators,
or on programming errors related to memory allocation, to
implement a memory corruption attack. For example, memory
allocators typically do not clear unused memory after de-
allocation requests, because it impacts program performance.
This poses significant security problems. Attackers manipulate
the allocator in such a way that a newly requested block
(under the control of the attacker) overlaps recently released
block containing sensitive data. Memory-management errors
in applications are also a significant threat; one example are
use-after-free errors, where the attacker uses a stale pointer to
deallocated memory to read or write a newly allocated block
that overlaps the deallocated block.

3) Code Injection: Another way of exploiting a program is
to make it execute code under the attacker’s control, potentially
leading to the attacker taking control of the entire program or
even system (programs running with administrator privileges
effectively control the entire machine). To achieve this, the
attacker injects malicious code into a running program and
then redirects execution to the injected code [2]. This attack
requires (i) a memory corruption vulnerability, (ii) an executable
and writable region of memory, and (iii) a way to direct the
processor to execute newly-written data. The third requirement
is usually met through memory corruption as well, by modifying
a code pointer (like the on-stack return address) to point to
the new code. The attacker then crafts a native code payload,
writes it to memory, then redirects execution to it. The processor
executes the newly inserted block, leaving the attacker in control
of the thread of execution.

4) Code Reuse: Operating systems used to allow execution
of most program data. This enabled code injection. For example,

the entire native stack was executable on Windows and Linux
systems. To prevent code injection attacks, operating systems
now implement a security model (known as Data Execution
Prevention—DEP—or W⊕X [48]) which mandates that a
memory page is either writable or executable, but not both at
the same time. Code reuse attacks [44], [39], [57], [63] have
emerged as a counter-measure to non-executable data defenses.
Instead of injecting new code, attackers construct an attack
from pieces of executable code (either entire functions [44],
[63] or smaller snippets of code) already found in the target
program.

Also as a reaction to randomization-based defenses, infor-
mation leaks have become an increasingly crucial part of code-
reuse attacks. One example of this development is a new code-
reuse attack called “just-in-time code reuse” [60]. This attack
uses information leak techniques to read the code loaded by the
target program. Snow et al. avoids page faults by decompiling
a page of code at a time and incrementally following references
to other mapped pages. After collecting all gadgets, the attack
code (containing a built-in gadget compiler) compiles a tailored
code reuse payload for that particular program and then runs
the attack against the program.

5) JIT Attacks: The introduction of new programming
models can change the landscape and introduce new threats to
security. In recent years, just-in-time, JIT, compiled languages
(such as Java and JavaScript) have become increasingly popular.
For example, many dynamically-generated or interactive web
pages are written in JavaScript, and all major web browsers
contain a JIT compiler for JavaScript. These languages allow
programmers to create and run new code dynamically (during
program execution); a JIT compiler then translates from source
to binary code. This creates a new problem: the attacker
can craft and insert malicious source code into the program
itself. This is a variant of code injection applied to source
code. Program source code is stored as non-executable data,
so existing anti-code injection defenses are insufficient. JIT
spraying [10] is a recent attack of this kind. When compiling
expressions containing constant values, just-in-time compilers
may embed the constants directly in binary code. This gives the
attacker a way to inject arbitrary binary code into the program,
by using constants that contain an attack payload.

6) Program Tampering: The ability to modify a program’s
state (tamper with the program) has many applications: the
attacker can modify unprotected code pointers or instructions
to execute arbitrary code, change program data to gain some
benefit or bypass DRM protections. One example is bypassing
checks in programs that prompt for passwords or serial numbers.
Another example of tampering is cheating at computer games,
where players give themselves unfair advantages by removing
restrictions from the game. Tampering with a program may
require the use of one or more of the previously described
attacks, as intermediate steps to achieving the desired effect on
the target.

Client-side tampering requires unfettered access to the
target program, and the attacker is often also in control of
the entire physical machine, as well as the operating system,
running the program (this model is known as man-at-the-end,
or MATE [15]). This is a different adversarial model from the
other attacks, where the attacker has restricted access to the
program, and little or no access to the underlying system.
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7) Reverse Engineering: Often, the attacker seeks not to
impact the execution of a program, but to find out how
the program works internally. Notable uses include reimple-
mentation, compatibility with new software, and defeating
security-through-obscurity. Security researchers working on
both offenses and defenses use reverse engineering to discover
exploitable program vulnerabilities, both from the original
program and from patches [22], [18].

B. Taxonomy of Defenses

Many attacks rely on program bugs that are fixable when
the program source code is available. If this is not the case,
or if attacks rely on intended program behavior, alternative
techniques are available. We separate these techniques into the
following categories:

1) Enforcement-based Defenses: To defend against attacks,
users may opt to take a proactive approach where they seek
to prevent attacks from occurring (whenever some program
behavior is exploitable, defenders preemptively disallow that
behavior). Examples include checking the bounds on array
accesses (against buffer overflows), making the data sections
non-executable (against code injection) and restricting control
flow exclusively to intended paths (to prevent code reuse
attacks)—also known as Control Flow Integrity (CFI) [1].
Software Fault Isolation (SFI) [43], [68] is a similar approach
that restricts control flow to limited targets within a sandbox.
Defenders can deploy these techniques at the source code
level, during program compilation [68], or through static binary
rewriting [65], [69].

Due to the rise of code injection attacks, modern operating
systems (Windows, Linux2, and OS X) all deploy one low-
cost enforcement defense: Data Execution Prevention (DEP,
also known as W⊕X). DEP requires the operating system to
map all pages containing program data (such as the heap and
stack) as non-executable, and all pages of program code as
non-writable. This defense has negligible performance costs
and effectively stopped most code injection attacks without
requiring substantial changes to programs.

Other enforcement techniques require significant changes to
protected programs and impose extra restrictions and costs on
both programs and programmers. For example, array bounds
checking requires extra operations around each array element
access; CFI requires extra address checks around each indirect
branch. In programs that contain many array accesses or
indirect branches, these checks incur significant performance
penalties. In addition, programmers have to account for the
extra restrictions; for example, they must check that the program
does not violate any security restriction during normal program
operation. Therefore, we regard this class of defenses as the
most intrusive.

2) Program Integrity Monitors: If an attack cannot be
prevented, the last line of defense is stopping the program
before the attacker has a chance to do any damage. Doing
this manually requires significant effort and attention from
program users. To stop the program, they first have to notice
any unusual behavior in the operation of the program. In many
cases, this unusual behavior is either invisible to the user, or

2The PaX Team implemented DEP on Linux [48].

is intentionally hidden by the attacker (to prevent detection).
While defining when a program is acting “unusually” is very
hard, detecting specific attacks is much simpler and can be
easily automated in many cases. For each detectable attack,
an integrity monitor periodically investigates the state of the
running program and checks for signs of an attack.

Examples of such defenses are “stack canaries” [19]
and “heap canaries.” Code execution attacks often use buffer
overflows to overwrite a code pointer, e.g., the return address
of the currently executing function. To defend against this
attack, modern compilers can insert canaries to guard the return
address against changes by pairing it with a randomized guard
value—the “canary.” Any change to the return address will also
change the canary, and the attacker cannot reasonably predict
the random value of the canary. On every function return, the
program checks the canary against the expected random value
and terminates on mismatches. The overheads from the added
checks are often negligible (less than 1% on average [61]).

Monitoring defenses are the least intrusive form of defense
(in many cases, they can be deployed transparently to the
program), but are the most vulnerable to detection and deception.
Monitoring allows attackers the same amount of control as long
as they remain undetected and they may detect and tamper
with the monitor to let the attack succeed.

3) Diversity-based Defenses: Attackers often rely on being
able to predict certain details of program implementation, such
as the memory locations of sensitive program objects (like code
pointers). Removing predictability is, in most cases, as effective
as restricting what the attacker can do with the predicted
knowledge. Diversification makes program implementations
diverge between each computer system or between each
execution. This means that the attacker has to either limit
the attack to a small subset of predictable targets, or adjust the
attack to account for diversity. The latter is impractical in most
cases (because it would require duplicated attack effort for each
different version of the target), so the malicious effects of the
attacks are limited at worst to a small number of targets (where
the attacker still gets full control, in absence of any monitoring
or enforcement-based defenses). The three following sections
treat approaches to diversity in much greater detail. Researchers
have investigated the practical uses of automated software
diversity against the attacks enumerated in Section II-A (except
information leaks and side channels). Figure 1 links attacks to
corresponding studies of diversity.

4) Program Obfuscation: Obfuscation to prevent reverse
engineering attacks [14], [16] is closely related to diversity and
relies on many of the same code transformations. Diversity
requires that program implementations are kept private and
that implementations differ among systems; this is not required
for obfuscation. Pucella and Schneider perform a comparative
analysis of obfuscation, diversification, and type systems within
a single semantic framework [51].

III. WHAT TO DIVERSIFY

At the core of any approach to software diversity, whether
performed manually by programmers or automatically by a
compiler or binary rewriter, is a set of randomizing transforma-
tions that make functionally equivalent program copies diverge.
A second distinguishing factor among approaches is when
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diversity is introduced in the software life-cycle. These two
choices—what to diversify and when to diversify—constitute
the major axes of the design space and together determine the
fundamental properties of any concrete approach. This section
focuses on the former choice and Section IV addresses the
latter.

Randomizing transformations are conceptually similar to
compiler optimizations. Both consist of three steps: (i) deter-
mining if a code fragment can be transformed, (ii) estimating
if the transformation is profitable, and (iii) applying the
transformation. A diversifying transformation differs in the
second step by adding an element of chance. The heuristic
that determines whether to transform a code fragment or not is
replaced (or extended) with a random choice using a pseudo-
random number generator (PRNG). Early studies of security
via software diversity were compiler-based [13], [24].

Like compiler optimizations, the scope of diversifying
transformations varies in granularity from single instructions
to the entirety of the program.

5) Instruction Level: These transformations affect at most
a few instructions inside a single basic block3. Permuting and
displacing instructions breaks fine-grained code reuse attacks
(assuming implementation details do not leak to attackers [60],
[9]). They include but are not limited to:

a) Equivalent Instruction Substitution: The functionality
of some instructions overlaps with that of others such that it is
often possible to substitute one for another. Load instructions
that support multiple addressing modes are common examples.

b) Equivalent Instruction Sequences: Substituting one
or more instructions for another instruction sequence leads to
even more randomization opportunities. For instance, negation
followed by subtraction can substitute for integer addition.

c) Instruction Reordering: It is well known that instruc-
tions can execute in any order that preserves the dependencies
between data-producing and data-consuming instructions. Using
a compiler’s instruction scheduler to randomize the instruction
order increases diversity among the output binaries.

d) Register Allocation Randomization: While program
performance is highly dependent on what variables are allocated
to registers, the particular register a variable is assigned to is
often irrelevant. Consequently, it is straightforward to randomize
register assignments. Register spilling and re-materialization
heuristics are amenable to randomization, too.

e) Garbage Code Insertion: This transformation can be
as simple as adding no-operation instructions (NOPs), or as
complex as inserting entirely new statements. In contrast to
other transformations, garbage insertion is always possible and
hence allows production of infinitely many program variants.

6) Basic Block Level: The number and ordering of basic
blocks within a function or method can be chosen freely. This
enables several control-flow transformations including:

3A basic block is a sequence of instructions where the execution of the first
instruction guarantees that all following instructions are executed, i.e., only
the instruction that terminates the block may be a branch.

a) Basic Block Reordering: The last instruction in a
basic block can either branch to the successor basic block or
have execution fall through to the basic block following it in
memory. Reordering makes it necessary to insert additional
jumps between pairs of basic blocks chained together on fall-
through paths (i.e., without branches) and makes branches
in blocks that can fall through after reordering superfluous.
Basic block splitting and merging creates additional reordering
opportunities.

b) Opaque Predicate Insertion: A single-predecessor
block b can be substituted with a conditional branch to b and its
clone b′ using an arbitrary predicate [14], [16]. These predicates
can also guard blocks of garbage code so they never execute.

c) Branch Function Insertion: Branch functions do not
return to their callers; instead, they contain code that determines
the return address based on the call site [41]. Branch functions
can replace direct control transfers via branches and fall-through
paths. Similarly, direct calls to functions can be replaced by
call functions that obfuscate the call graph.

The first transformation permutes the code layout and breaks
fine-grained code reuse attacks. All basic block transformations
also complicate the code matching step in patch reverse
engineering.

7) Loop Level: Loop-level transformations are suggested
by Forrest et al. [24] but not evaluated.

8) Function Level: Transformations at this granularity
include:

a) Stack Layout Randomization: Using a buffer overflow
to overwrite the return address stored on the machine stack
on x86 processors is a classic attack vector. As a result, many
randomizing transformations target the stack, including:

• stack frame padding,

• stack variable reordering,

• stack growth reversal, and

• non-contiguous stack allocation.

The last transformation allocates a callee stack frame at a
randomly chosen location rather than a location adjacent to the
stack frame of the calling function.

b) Function Parameter Randomization: This transfor-
mation permutes the existing formal parameters and may add
new ones as long as all call-sites can be rewritten to match the
actual parameters with the modified formal parameters. This
transformation is employed against tampering, code matching
and return-into-libc attacks.

c) Inlining, Outlining, and Splitting: Inlining the target
of a function call into the call-site is a well known compiler
optimization. Function outlining is the inverse of inlining: it
extracts one or more basic blocks and encapsulates them in
their own subroutine. As a special case of function outlining,
a function may be split into two; all live variables at the
point of the split are passed as parameters to the second
function. Together, these transformations randomize the number
of function calls and the amount of code duplication among
program variants to prevent code matching.
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d) Control Flow Flattening: The topology of a func-
tion’s control-flow graph can be obscured by replacing direct
jumps connecting basic blocks with indirect jumps that go
through “jump tables.” Rather than jumping directly to its
successor, each original basic block shares the same successor
and predecessor blocks. Again, this complicates code matching.

9) Program Level: Transformations at this level include:

a) Function Reordering: Functions can be laid out in
any order within executables and libraries. For dynamically
linked functions, the tables maintained by the dynamic linker
(e.g., the GOT and PLT dynamic linking structures on Linux
systems) can be randomized, too.

b) Base Address Randomization, ASLR: It used to be
the case that the base of the code and data segments (i.e.
the stack, heap, and statically allocated data) were always
loaded at fixed virtual memory addresses. Since the virtual
address space of each process is private, the starting address
can be chosen at random. Address Space Layout Randomization
(ASLR) implements base address randomization and is currently
the only deployed probabilistic defense. ASLR complicates
memory corruption, code injection, and code reuse attacks, but
can be bypassed via information leaks [60], [9].

c) Program Encoding Randomization: It is possible to
substitute one encoding of a program for another as long as
there is a way to reverse the process. The encoding is reversed
by a virtual machine that either interprets the randomized
instructions, or emulates a machine for the randomized encoding
by translating fragments back to native code prior to execution.
Many types of encodings can be used for this purpose. For
instance, one of the simplest and fastest encodings computes
the exclusive-or of the original program bytes and a randomly
chosen key; applying the same transformation when the
instructions are about to execute recovers the original encoding.
This approach is known as Instruction Set Randomization [37],
[5]. More complex encodings may compress the instruction
stream or offer stronger encryption guarantees. Some encodings
are designed to randomize the code layout [29] or code
addresses [59]. These transformations can defend against both
code injection and fine-grained code reuse attacks.

d) Data Randomization: These transformations aim to
stop memory corruption attacks with the exception of constant
blinding which defends against JIT-spraying. Several variations
are possible:

• Static Data Randomization. The layout of static vari-
ables can be permuted and padding can be added via
dummy variables.

• Constant Blinding. A constant c is blinded by applying
an injective function f(c, x) = c′ where x is a
randomly chosen value. During execution, c is obtained
by computing f−1(c′, x). The exclusive-or operation
is a common choice for f and f−1.

• Structure Layout Randomization. Composite data struc-
tures such as classes and structs can have their
layout randomized similarly to static data randomiza-
tion.

• Heap Layout Randomization. The layout of dynami-
cally allocated objects can be randomized by adding

random padding to each object. The memory allocator
can also split the heap into multiple regions and pick
a region in which to store each object at random.

e) Library Entry Point Randomization: Library func-
tions are identified by a standardized set of entry points. Each
of these entry points can be duplicated and the original entry
points can be changed to perform arbitrary functionality, i.e.,
the system in libc could be cloned into system_42
and system could be changed to terminate the program.
This breaks return-into-libc attacks. To function correctly,
legitimate programs that use randomized libraries must be
updated to use the private set of entry points.

10)System Level: Some transformations are tailored towards
system software such as the operating system. System Call
Mapping Randomization, for instance, is a variant of function
parameter diversification that targets the system call interface
between processes and the operating system kernel. Without
knowledge of the proper system call numbers, the effect of any
attack is confined to the compromised process. Applications
need to be customized before or after they are installed on the
host system to use the correct system call mapping.

Table I gives an overview of the transformations used in
the literature. An asterisk next to a checkmark means that
the authors presented the transformation without an evaluation.
The second column indicates in which stage of the software
life-cycle diversification takes place (the stages are: implemen-
tation, compilation, linking, installation, loading, execution, and
updating). Pre-distribution approaches (marked in Figure 1)
have been evaluated with a wider range of transformations—
call graph and function parameter randomization, for instance,
have not been evaluated with a post-distribution method. The
reason, we believe, is that these transformations require inter-
procedural analysis which is readily supported by compilers but
hard to support in binary rewriters. We see that most authors
combine at least two randomizing transformations or choose
to randomize the program encoding itself.

IV. WHEN TO DIVERSIFY

The life-cycle of most software follows a similar trajectory:
implementation, compilation, linking, installation, loading,
executing, and updating. Variations arise because some types
of software, typically scripts, are distributed in source form.
Figure 1 on page 7 shows how the approaches that we
survey fit into the software life-cycle. Some approaches are
staged and therefore span multiple life-cycle events; we place
these according to the earliest stage. We cover individual
diversification techniques according to the software life-cycle
from the implementation phase to the update phase.

A diversification engine need not randomize the input
program it processes. Several approaches defer diversification
by making programs self-randomizing [6], [8], [29], [64], [27].
Deferred diversification is typically achieved by instrumenting
programs to mutate one or more implementation aspects as the
program is loaded by the operating system or as it runs.

Instead of installing several programs instrumented to
randomize themselves, the diversification functionality can be
included in the operating system [48], [12]. This is exactly how
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TABLE I: Overview of randomizing transformations.
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ASLR4 is implemented. A compiler prepares the code for base
address randomization by generating position-independent code;
the operating system loader and dynamic linker then adjust the
virtual memory addresses at which the code is loaded.

Consequently, with deferred diversification, all instances
of a program share the same on-disk representation—only the
in-memory representations vary. This has several important
implications. Deferred approaches remain compatible with
current software distribution practices; the program delivered to
end users by simply copying the program or program installer.
When diversification is deferred, the program vendor avoids
the cost of diversifying each program copy. Instead the cost
is distributed evenly among end users. The end user systems,
however, must be sufficiently powerful to run the diversification
engine. While this is not an issue for traditional desktop and
laptop systems, the situation is less clear in the mobile and
embedded spaces.

Second, when diversification is deferred, an attacker does
not improve the odds of a successful attack with knowledge of
the on-disk program representation.

However, deferred diversification cannot provide protection
from certain attacks. Client-side tampering [15] and patch
reverse-engineering [17] remain possible since end users can
inspect the program binaries before diversification. Software

4ASLR is an example of a diversification technique that required compiler
customization to produce position independent code. All major C/C++ compilers
currently support this security feature.

diversification can also be used for watermarking [23]. If a
seed value drives the diversification process and a unique seed
is used to produce each program variant, the implementation
of each variant is unique, too. If each customer is given a
unique program variant, and the seed is linked to the purchase,
unautorized copying of the program binary can be traced back
to the original purchase. However, such use of diversity is also
hampered by deferred diversification.

11) Implementation: The idea of software diversity was
originally explored as a way to obtain fault-tolerance in mission
critical software. Approaches to software fault-tolerance are
broadly classified as single-version or multi-version techniques.
Early examples of the latter kind include Recovery Blocks [52]
and N-Version programming [4] that are based on design
diversity. The conjecture of design diversity is that components
designed and implemented differently, e.g., using separate
teams, different programming languages and algorithms, have
a very low probability of containing similar errors. When
combined with a voting mechanism that selects among the
outputs of each component, it is possible to construct a robust
system out of faulty components.

Since design diversity is only increased at the expense of
additional manpower, these techniques are far too costly to see
application outside specialized domains such as aerospace and
automotive software. The remaining techniques we will discuss
aim to provide increased security, and are fully automatic and
thus relevant to a greater range of application domains. This
means that diversity is introduced later in the software life-cycle
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Fig. 1: Approaches to software diversity in relation to the software life-cycle, their inputs, and the attacks they mitigate.

by a compiler or binary rewriting system.

12)Compilation and Linking: Implementing diversity in a
compiler makes the process automatic by avoiding changes to
the source code of programs. In contrast to humans, compilers
do not have a high-level understanding of the input source code
and must preserve semantics above all. This limits compile-time
diversity (and other fully automated approaches) to program
transformations that can be proven to preserve semantics. This
generally excludes high-level transformations such as changes
to the algorithms that make up a program; as Table I shows, a
plethora of lower-level transformations are possible.

Conceptually, compilers are structured as a sequence of
code transformation passes. The major passes include parsing
the source code into a compiler intermediate representation
(IR), performing machine-independent optimizations on the IR,
and finally converting the IR into a lower-level representation
to perform machine-dependent optimizations. The machine-
dependent passes make up the compiler back-end and include
optimizations such as instruction selection, instruction schedul-
ing, and register allocation. The randomizing transformations
surveyed in the preceding section are often implemented by
adding new pipeline passes; randomized register allocation or
randomized function inlining only require a few modifications
to the heuristics of existing passes. On the other hand,
transformations such as garbage insertion or opaque predicate
insertion are often added as new compilation passes. When
adding a diversifying transformation, care must be taken to
prevent later optimization passes from undoing its effects, e.g.,

dead-code elimination might unintentionally remove garbage
code.

From a software engineering perspective, re-purposing a
compiler to perform diversification offers at least four benefits:

Reuse avoids duplication of effort: Many of the ran-
domizing transformations described in Section III require data-
flow analysis to determine if the randomizing transformation
is possible. Since compilers already contain the prerequisite
analyses [62], such transformations are easy to support.

Compilers target multiple hardware platforms: Com-
pilers are highly sophisticated and thus costly to produce and
maintain. The high costs are typically amortized by supporting
multiple instruction sets in the compiler back-end. The GNU
Compiler Collection release 4.8, for example, supports over 50
different hardware models and configurations. Consequently,
randomizing transformations can easily target all platforms
supported by the host compiler.

Compilation avoids the need for disassembly: The
transformation from source code to object code is a lossy
transformation. Optimizations obscure the original program
structure and code and data is interspersed. As a result,
perfect recovery of the original program control flow is not
generally possible [13], [33]. Consequently, disassemblers rely
on heuristics that work most of the time. To preserve correctness
when these heuristics fail, runtime mechanisms are necessary
to detect and recover from disassembly errors.
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Compilers support profile guided optimization: It is well
known that many programs spend roughly 90% of their time
executing 10% of the code. Most compilers can instrument
and execute a program to discover the “hot” code paths.
A subsequent compilation pass uses the profile information
to better optimize frequently executed code at the expense
of less frequently executed code [50]. Since diversification
tends to make programs run slower, reducing the amount of
diversification for hot code fragments significantly lowers the
performance overhead [17], [31].

Unfortunately, it is not always possible to customize a
compiler. While two of the major production compilers in
use today—the GNU Compiler Collection and LLVM—have
open source licenses, several proprietary compilers remain in
widespread use. Absent any extension mechanism and vendor
support, proprietary compilers cannot act as diversification
engines. While customizing a compiler may be the natural way
to implement diversification, two alternatives are also available.
First, source-to-source transformations can be applied prior
to compilation. Bhatkar et al. do so to make programs self-
randomizing at load time [8]. Second, program diversification
can happen after compilation in one of two ways. The first way
is to instruct the compiler to output assembly code such that
it can be rewritten before it is assembled and linked [40].
The second way is to disassemble and rewrite the object
files produced by the compiler before or during linking [6].
These, link-time diversification techniques have the following
advantages:

Debugging information is available: Software vendors
typically strip binaries of debug information before they are
distributed since debugging information facilitates reverse
engineering. So, in contrast to post-link diversification, reliable
static disassembly is feasible.

The approach is compatible with proprietary compilers
and linkers: Diversification after compilation (and before
linking) is possible even on platforms where neither the
compiler nor the linker is amenable to customization.

Whole program diversification is possible: Compilers
typically process one translation unit, i.e., a source file and the
headers it includes, at a time. This gives compilers a limited
view of the program, meaning that certain transformations are
not possible. Function reordering, for instance is not practical
before all functions have been compiled, i.e., at link time.

Pre-distribution approaches (that do not produce self-
randomizing binaries) generally share two drawbacks in contrast
to the post-distribution techniques we cover later in this section:

Cost of producing program variants: If programs are
diversified before they are distributed to end users, software
vendors must purchase the computational resources to generate
a program variant for each user. At first, it may seem that if
it takes n minutes to compile a program, generating a unique
variant for x users takes n∗x time which obviously is expensive
for popular and complex software. However, Larsen et al. [40]
show that much of the work to create each variant is repetitive
and can be cached to reduce compilation time by up to 92%.

Increased Distribution Costs: While pre-distribution
methods ensure that clients cannot disable diversification, each
client must download a separate program variant. This requires

changes to the current software distribution channels. Rather
than cloning a “golden master” copy, distribution systems must
maintain a sufficiently large inventory of program variants such
that downloads start without delay. Not all inventory may be
used before new program versions are released. These changes
will most likely also affect the content distribution networks
used for high volume software.

Note that ahead-of-time compiled languages incur both of
these costs while just-in-time compiled languages, such as Java
and JavaScript, do not (compilation to machine code happens
on the clients).

13) Installation: We now move to approaches where
diversification happens during or after program installation
on the host system and before it is loaded by the operating
system.

The need to disassemble stripped binaries is a major
challenge at this stage. As previously mentioned, error-free
disassembly without debugging symbols is not generally
possible. The compiler intersperses code and data, i.e., by
inserting padding between functions and embedding jump tables,
constant pools, and program meta-data directly in the instruction
stream.

Post-installation and load-time diversification must disas-
semble program binaries before they run. Typically, a powerful,
recursive disassembler such as Hex-Rays IDA Pro is used
for this process. A recursive disassembler uses a worklist
algorithm to discover code fragments inside a binary. The
worklist is initially populated with the program entry point(s),
additional code fragments are put on the list by discovering
control flow edges by analyzing the calls and branches of each
list item. Unfortunately, the problem of determining whether the
control flow can reach a particular code location is equivalent
to the halting problem and thus undecidable [13, p. 578].
Disassemblers therefore err on the side of not discovering
all code [47] or, alternatively, treat all of the code section as
instructions even though some bytes are not [29], [65].

In-place diversification is an install-time-only approach that
sidesteps the problem of undiscovered control flow [47]. Code
sequences reachable from the program entry point are rewritten
with other sequences of equal length. Unreachable bytes are
left unchanged thus ensuring that the topology of the rewritten
binary matches that of its original. In-place rewriting preserves
the addresses of every direct and indirect branch target and
thereby avoids the need for and cost of runtime checks and
dynamic adjustment of branch targets. The approach does have
two downsides, however: (i) undiscovered code is not rewritten
and thus remains available to attackers and (ii) preserving the
topology means that return-into-libc attacks are not thwarted.

Most other post-installation diversification approaches are
staged and include actions at multiple steps in the application
life cycle. Typically a program is prepared for randomization
after it has been installed and is randomized as it is loaded.

Instruction location randomization (ILR) rewrites binaries
to use a new program encoding [29]. ILR changes the
assumption that, absent any branches, instructions that are
laid out sequentially are executed in sequence; instructions are
instead relocated to random addresses by disassembling and
rewriting programs as they are installed on a host system. A data
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structure, the fallthrough map, contains a set of rewrite rules
that map unrandomized instruction locations to randomized
ones and to map each randomized instruction location to its
successor location. To avoid the need to separate code and data,
rewrite rules are generated for all addresses in a program’s
code section. A process virtual machine, Strata [55], executes
the rewritten programs. At runtime, Strata uses the fallthrough
map to guide instruction fetch and reassemble code fragments
before execution; fragments are cached to reduce the translation
overhead.

Binary stirring [64] is also a hybrid approach that disas-
sembles and rewrites binaries as they are installed such that
they randomize their own code layout at load time. Rather
than using a process virtual machine, randomization is done
via a runtime randomizer that is unloaded from the process
right before the main application runs. This ensures that the
code layout varies from one run to another. Instead of trying to
separate data from code, the text segment of the original binary
is treated as data and code simultaneously by duplicating it into
two memory regions—one which is executable and immutable
and one which is non-executable but mutable. One duplicate
is left unmodified at its original location and marked non-
executable. The other duplicate is randomized and marked
executable. Reads of the text segment go to the unmodified
duplicate whereas only code in the randomized duplicate is
ever executed. All possible indirect control flow targets in the
unmodified duplicate are marked via a special byte. A check
before each indirect branch in the randomized duplicate checks
if the target address is in the unmodified duplicate and redirects
execution to the corresponding instruction in the randomized
duplicate.

Chew and Song customize each operating system installation
to use randomized system call mappings and randomized library
entry points [12]. Application programs must therefore be
customized to the system environment before they run. Since
the goal of rewriting the binaries is to use the correct system
call identifiers and library entry points of a particular system,
the topology of the binaries does not change. Again, this means
that undiscovered control flow is not an issue. However, the
problem of undiscovered code implies that rewriting may fail
to update all system and library calls.

The drawbacks of static binary rewriting can be summarized
as follows:

Overheads of runtime checking: Most static rewriting
solutions include a runtime mechanism to compensate for static
disassembly errors. For instance, undiscovered control flows
to addresses in the original program may be dynamically
redirected to the corresponding locations in the rewritten
program—e.g., by placing trampoline code at the addresses
containing indirect branch targets in the original program. The
compensation code invariably adds an overhead to the rewritten
program, even without diversification, because it increases the
working set and instructions executed relative to the original
program. Some static binary rewriters omit these compensation
mechanisms [47], [21]. Such approaches are unsafe; program
semantics may not be preserved due to disassembly errors.

Incompatibility with code signing: Commercial binaries
use digital signatures and modern app stores require them. This
allows the operating system to establish the provenance of the

code and verify its integrity before launching an application.
Binary rewriters that change the on-disk representation of
programs cause these checks to fail.

Heterogeneity of binary program representations:
Program binaries do not solely consist of machine code; they
also contain various forms of meta-data such as relocation
information, dynamic linker structures, exception handling meta-
data, debug information, etc. Static binary rewriters must be
able to parse this meta-data to discover additional control flow.
The format of this meta-data is not only operating system
specific—it is also specific to the compiler and linker that
generated the binary. So in contrast to compilers, whose input
languages are mostly platform agnostic, it requires far more
effort to support multiple operating systems and compilers in
a binary rewriter.

All post-distribution approaches, e.g., those that diversify
software on the end user’s system rather than prior to its
distribution, share several key advantages and drawbacks. The
advantages are:

Legacy binaries without source code can be diversified:
Since these approaches require no code-producer cooperation,
legacy and proprietary software can be diversified without
access to the source code.

Distribution of a single binary: Post-distribution di-
versification remains compatible with the current practice of
distributing identical binaries to all users.

Amortization of diversification costs: Unlike pre-
distribution techniques, post-distribution diversification spreads
this cost among the entire user base.

The drawbacks are:

No protection against client side attacks: Since post-
distribution diversification runs on clients, the process can
be disabled by malware or the end users themselves. If
diversity is used to watermark binaries and raise the cost of
reverse engineering and tampering, it must be applied prior to
distribution.

The diversification engine increases the trusted comput-
ing base: Widely distributed software such as the Java Virtual
Machine, Adobe Reader and Flash are valuable to attackers.
Since all systems must host a copy of the diversification engine,
it becomes another high visibility target.

No support for operating system diversification: In con-
trast, several compile-time diversification approaches support
operating system protection [12], [27], [34]. Rewriting kernel
code is not impossible but it is rather involved because kernels
differ from application code in numerous ways. Kernel code is
self-loading and does not adhere to a particular binary format;
Linux images, for instance, consist of a small decompression
stub and a compressed data-stream. The control flow in kernels
is also particularly hard to analyze due to extensive use of hand-
written assembly and indirect function calls for modularity. The
control flows from system calls, exception handlers and interrupt
handlers are implicit and must be discovered by parsing kernel
specific data structures. Additionally, some code cannot be
altered or moved since it interacts closely with the underlying
hardware.
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14)Loading: Load-time diversification approaches do not
change the on-disk representation of programs. Rather, they
perform randomization as these are loaded into memory by the
operating system.

Many deferred diversification approaches perform random-
ization at load-time. With ASLR for instance, the compiler
prepares binaries for randomization during code generation
while the loader selects the randomized base address.

Several load-time diversification approaches also have run-
time components. Barrantes et al. [5], for instance, randomizes
the instruction set encoding as code is loaded and uses the
Valgrind dynamic binary rewriter [45] to decode the original
machine instructions as they are about to execute. Williams et
al. [67] similarly implement instruction set randomization atop
the Strata process virtual machine. Their approach even has a
compile-time component to prepare binaries by adding an extra
“hidden” parameter to each function. This parameter acts as a
per-function key whose expected value is randomly chosen at
load-time and checked on each function invocation. The process
virtual machine instruments each function to verify that the
correct key was supplied; it also randomizes the instruction
set encoding to prevent code injection. Without knowledge of
the random key value, function-level code-reuse (e.g., return-
into-libc) attacks are defeated. Finally, Shioji et al. [59]
implement address-randomization atop the Pin [42] dynamic
binary rewriter. A checksum is added to certain bits in each
address used in control flow transfers and the checksum is
checked prior to each such transfer. Attacker injected addresses
can be detected due to invalid checksums. Checksums are
computed by adding a random value to a subset of the bits in
the original address and hashing it.

In contrast to these hybrid approaches, Davi et al. [21] imple-
ment a pure load-time diversification approach that randomizes
all segments of program binaries. The code is disassembled
and split into code fragments at call and branch instructions.
The resulting code fragments are used to permute the in-
memory layout of the program. The authors assume that binaries
contain relocation information to facilitate disassembly and
consequently omit a mechanism to compensate for disassembly
errors.

In addition to the general benefits of post-distribution, the
particular benefits of load-time diversity are:

Compatibility with signed binaries: Load-time diversi-
fication avoids making changes to the on-disk representation
of binaries and therefore permits integrity checking of signed
binaries in contrast to post-installation rewriting approaches.

Dynamic disassembly: With the exception of Davi et
al. [21], load-time approaches are based on dynamic binary
rewriting. Rather than trying to recover the complete control
flow before execution, the rewriting proceeds on a by-need basis
starting from the program entry point. Control flow transfers to
code that has not already been processed are intercepted and
rewritten before execution; already translated code fragments
are stored in a code cache to avoid repeated translation of
frequently executed code. This avoids disassembly errors and
consequently the need to handle these at runtime.

The drawbacks of load-time approaches are:

Runtime overhead of dynamic rewriting: Dynamic
rewriting, like dynamic compilation, happens at runtime and
thereby adds to the execution time. In addition, the binary
rewriter itself, its meta-data, and code cache increase the
pressure on the cache hierarchy and the branch predictors.

No sharing of code pages for randomized libraries:
Operating systems use virtual memory translation to share a
single copy of a shared library when it is loaded by multiple
processes. Since libraries such as libc are loaded by almost
every process on a Unix system, this leads to substantial savings.
However, load-time rewriting of shared libraries causes these
to diverge among processes which prevents sharing of code
pages.

15)Execution: The preceding sections have already covered
approaches with runtime aspects, e.g., those involving dynamic
binary rewriting. We now focus on diversification that primarily
takes place during execution. The fact that certain techniques,
i.e., dynamic memory allocation and dynamic compilation,
cannot be randomized before the program runs motivates these
approaches. Consequently, runtime diversification approaches
complement all previously discussed approaches by randomiz-
ing additional program aspects.

Many heap-based exploits rely on the heap layout. Ran-
domizing the placement of dynamically allocated data and
meta-data makes such attacks more difficult. The heap layout
is randomized one object at a time by modifying the memory
allocator [46]. The diversifying allocator has several degrees of
freedom. It can lay out objects sparsely and randomly in the
virtual address space rather than packing them closely together.
It can also fill objects with random data once they are released
to neutralize use-after-free bugs.

Dynamic code generation has also been exploited via JIT-
spraying attacks against web browsers that compile JavaScript
to native code. Like ahead-of-time compilers, just-in-time
compilers can be modified to randomize the code they gener-
ate [66]. For legacy and proprietary JIT-compilers, dynamic
binary rewriting enables randomization without any source code
changes at the expense of a higher performance penalty [30].
Such rewriting, however, creates higher overheads than code
randomization done directly by the JIT-compiler.

16)Updating: Program patches are the delivery vehicle for
security and usability improvements. Attackers can compute the
code changes between two versions by comparing a program
before and after applying an update. Unfortunately, knowledge
of the code changes helps adversaries locate exploitable bugs
and target users that have not yet updated their software.

Software updates can be protected by diversifying each
program release before generating the patch. This has two
beneficial effects. First, diversification will make the machine
code diverge even in places where the source code of the
two program releases do not; this potentially hides the “real”
changes in a sea of artificial ones. Second, diversification can
be done iteratively until the heuristics used to correlate two
program versions fail; this greatly increases the required effort
to compare two program releases at the binary level [18], [17].
Note that diversity against reverse engineering program updates
works by randomizing different program releases (temporal
diversity) rather than randomizing program implementations
between different systems (spatial diversity).
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Software diversity can also be used to introduce artificial
software updates. It is generally recognized that, given full
access to a binary, a determined adversary can successfully re-
verse engineer and modify the program given enough time [13].
If the binary requires server access to work, the server can force
client systems to download a continuous stream of updates by
refusing to work with older client software releases [15]. This
exhausts the resources of an adversary since he is forced to
reverse engineer each individual release.

V. QUANTIFYING THE IMPACT OF DIVERSITY

The preceding section described software diversification
approaches in qualitative terms. While this is important to
implementors of diversification engines, it does not help
adopters of diversified software quantify the associated costs
and benefits. This section survey how researchers quantify the
security and performance impacts of software diversity.

A. Security Impact

Software diversity is a broad defense against current and
future implementation-dependent attacks. This makes it hard to
accurately determine its security properties before it is deployed.
The goal of diversity—to drive up costs to attackers—cannot be
measured directly, so researchers resort to proxy measurements.
Ordered from abstract to concrete, the security evaluation
approaches used in the literature are:

Entropy analysis: Entropy is a generic way to measure
how unpredictable the implementation of a binary is after
diversification. Low entropy solutions, e.g., ASLR on 32-
bit systems, are insecure because an attacker can defeat
randomization via brute-force attacks [58]. Entropy, however,
overestimates the security impact somewhat since two program
variants can differ at the implementation level and yet be
vulnerable to the same attack.

Attack-specific code analysis: The construction of certain
attacks has been partially automated. Gadget scanners [53], [32],
[54], for instance, automate the construction of ROP chains.
These tools are typically used to show that a code reuse attack
generated by scanning an undiversified binary stops working
after diversification. However, adversaries could collect a set
of diversified binaries and compute their shared attack surface
which consists of the gadgets that survive diversification—
i.e., they reside at the same location and are functionally
equivalent. Homescu et al. [31] use this stricter criterion—
surviving gadgets—in their security evaluation.

Logical argument: Early papers on diversity did not qualify
the security properties and rely on logical argumentation
instead [13]. For instance, if an attack depends on a particular
property (say the memory or code layout of an application)
which is randomized by design, then the defense must succeed.
Unfortunately, such reasoning does not demonstrate the entropy
of the solution, i.e., how hard it is for an attacker to guess how
a program was randomized.

Testing against concrete attacks: Often, researchers can
build or obtain concrete attacks of the type their technique
defend against. Showing that such attacks succeed before
diversification but fail afterwards is a common proxy for
security. Again, such testing does not imply high entropy.

TABLE II: Security impact of transformations.
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Cohen’93 [13] Many �
Forrest et al.’97 [24] Stack Buf.

Ovf.
� �

PaX Team’01 [48] Mem. Corr.,
Code Inj.

�

Chew & Song’02 [12] Buffer Ovf �
Bhatkar et al.’03 [6] Many � �
Kc et al.’03 [37] Code Inj. � �
Barrantes et al.’05 [5] Code Inj. � � � �
Bhatkar et al.’05 [8] Many � �
Kil et al.’06 [38] Mem. Corr. � � �
Bhatkar et al.’08 [7] Mem. Corr. � �
De Sutter et al.’09 [22] Code

Matching
� �

Williams et al.’09 [67] Code Inj.,
Code Reuse

� � �

Novark et al.’10 [46] Mem. Alloc.,
Heap Buf.
Ovf.

� �

Jackson et al.’11 [35] Many �
Wei et al.’11 [66] Heap Spray,

JIT Spray
� �

Pappas et al.’12 [47] Code Reuse � � � �
Hiser et al.’12 [29] Code Reuse � � � �
Giuffrida et al.’12 [27] Many � �
Wartell et al.’12 [64] Code Reuse � � � �
Collberg et al.’12 [15] Tampering � � � �
Shioji et al.’12 [59] Code Reuse � � �
Jackson et al.’13 [34] Code Reuse �
Homescu et al.’13a [31] Code Reuse � � �
Coppens et al.’13 [18] Code

Matching
� � �

Gupta et al.’13 [28] Code Reuse � � �
Davi et al.’13 [21] Code Reuse � � � �
Homescu et al.’13b [30] JIT Spray,

Code Reuse
�

Since each of the ways to evaluate security impacts are
imperfect, authors often use both abstract and concrete security
evaluations. Table II shows how each implementation evaluates
the impact of their approach. One commonality among all
evaluations is the assumption that the effects of diversification
remain hidden from attackers. However, in Section VI-C we
highlight vulnerabilities that enable implementation disclosure
and thereby undermine this assumption.

B. Performance Impact

The chance that a security technique sees adoption is
arguably inversely proportional to its performance overhead.
So far, the only ones that have been widely adopted (ASLR,
DEP, and stack canaries) are those with negligible performance
impact. For another technique to be adopted at large, its
performance impact must be below 5-10% according to
Szekeres et al. [61].

Different studies of diversity measure performance cost
differently. The most popular benchmark for this is the SPEC
CPU benchmark suite, usually the most recent version available
(at present, that is SPEC CPU 2006). In cases where SPEC CPU
is not available or appropriate as a benchmark, implementations
measure the CPU impact on other workloads, such as real-world
applications (Apache, Linux command line utilities, the Wine
test suite) or other CPU benchmarks. As the implementations of
most of the techniques we discussed are not publically available,
we rely on self-reported performance numbers from their
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TABLE III: Costs of transformations.

Study Stage Benchmark Performance Overhead Code Increase Memory Increase Language
Randell’75 [52] Impl. N/A

Avizienis & Chen’77 [11] Impl. N/A

Cohen’93 [13] Comp. N/A

Forrest et al.’97 [24] Comp. N/A

PaX Team’01 [48] Comp., SPEC CPU 2006 32-bit 9% N/A (Language Agnostic)
(ASLR results by Payer [49]) Load SPEC CPU 2006 64-bit 2% N/A

Chew & Song’02 [12] Comp.,
Load

N/A C/C++

Bhatkar et al.’03 [6] Inst. Linux utils 0%-21% N/A C/C++

Kc et al.’03 [37] Inst. ftp 33% N/A C/C++
sendmail 1974%
fibonacci 28781%

Barrantes et al.’05 [5] Load,
Exec.

Apache—SPEC web 99 62% N/A C/C++

Bhatkar et al.’05 [8] Comp. Linux utils, Apache 11% N/A C/C++

Kil et al.’06 [38] Link SPEC CPU 2000 0% N/A C/C++
LMBench 3.57%

Apache 0%

Bhatkar et al.’08 [7] Comp. Linux utils 15% N/A C/C++

De Sutter et al.’09 [22] Link SPEC CPU 2006 5%-10% N/A C/C++

Williams et al.’09 [67] Load,
Exec.

SPEC CPU 2000—ISR 17% N/A C/C++

SPEC CPU 2000—CSD 54%

Novark et al.’10 [46] Exec. SPEC int 2006 20% N/A C/C++
Firefox 5%

Jackson et al.’11 [35] Comp. N/A C/C++

Wei et al.’11 [66] Exec. V8 5% N/A JavaScript

Pappas et al.’12 [47] Inst. Wine tests 0% N/A C/C++

Hiser et al.’12 [29] Inst.,
Exec.

SPEC CPU 2006 13%-16% 14MB-264MB 14MB-345MB C/C++

Giuffrida et al.’12 [27] Comp.,
Exec.

SPEC CPU 2006 4.8% N/A C/C++

devtools 1.6%

Wartell et al.’12 [64] Inst.,
Load

SPEC CPU 2000 4.6% 73% 37% C/C++

Linux coreutils 0.3%

Collberg et al.’12 [15] Comp. SPEC CPU 2000 5%-10% N/A C/C++

Shioji et al.’12 [59] Load.,
Exec.

bzip2 265%-2510% N/A C/C++

Jackson et al.’13 [34] Comp. SPEC CPU 2006 5%-10% 20%-50% N/A C/C++
Apache 11.3%

Homescu et al.’13a [31] Comp. SPEC CPU 2006 1% N/A C/C++

Coppens et al.’13 [18] Upd. SPEC CPU 2000 5%-30% 15%-20% 5%-30% C/C++

Gupta et al.’13 [28] Inst. N/A C/C++

Davi et al.’13 [21] Load SPEC CPU 2006 1.2%-5% 1.76% 5% C/C++

Homescu et al.’13b [30] Exec. V8 250% N/A JavaScript
HotSpot 15% Java

authors. Along with the average impact of each implementation
on program running time, we also show the effects on memory
usage and on-disk binary file size (when reported). Table III
shows the time and space cost of each technique.

For pre-distribution approaches, the overheads generally
range from 1 to 11%. For post-distribution methods, the range
of reported overheads is greater and typically range from 1% to
250% indicating that implementations of these approaches must
take greater care to keep overheads in check. (Note that Pappas
et al. [47] use an unorthodox benchmarking approach and that
we consider the approaches by Kc et al. [37] and Shioji [59]
to be outliers.) While the benchmarking methodology varies
considerably, we conclude that both pre and post-distribution
approaches can result in low runtime overheads [31], [21].
We also see greater variability in the binary size overheads
among post-distribution approaches when compared to pre-
distribution approaches; in both cases, the overheads are small
to moderate. Some post-distribution approaches also increase
runtime memory overheads—between 5% and 37%.

Note that Table III excludes ahead-of-time costs associated
with diversification. For pre-distribution methods, the software
developer or distributor may pay the diversification costs. For
post-distribution methods, end users contribute the computing
resources to diversify programs during installation, loading or

running. It remains to be seen if on-device diversification is
practical on resource and power-constrained computers such
as mobile devices and embedded systems.

VI. OPEN AREAS AND UNSOLVED CHALLENGES

While the security and performance implications of diversi-
fied software are well understood, several practical concerns
remain to be addressed. In addition, existing research has not
fully explored the protective qualities of diversified software
nor has it reached consensus on how to evaluate the efficacy
of software diversity with respect to the attacker workload. For
example, we think that it can provide probabilistic protection
against the long standing problem of covert channels.

A. Hybrid Approaches

A schism exists between proponents of compilation-based
diversification and diversification via binary rewriting. It is
frequently argued that binary rewriting is preferable to compiler-
based methods because the latter require source code access,
custom compilers, and require changes to current program
distribution mechanisms [67], [64], [29], [47]. However, binary
rewriting approaches are inherently client-side solutions and
therefore cannot defend against tampering or discourage
piracy via watermarking [40]. Moreover, a decompiler that
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produces LLVM compiler intermediate representation [3] can
be combined with a compiler-based diversification engine. This
results in a hybrid approach where the same randomizing
transformations can be applied to source code as well as legacy
binaries.

Another hybrid-approach of interest is centered around
compiler-rewriter cooperation. Static binary rewriting of
stripped binaries suffers from incomplete information. The
code-data separation problem could be entirely avoided if the
compiler (or linker) contains a map of all indirect branch
targets; this information is readily available at compile and
link-time. Enabling reliable disassembly not only simplifies
the implementation of binary rewriters and improves their
throughput, but the resulting binaries also run faster without
the need to detect and correct disassembly errors at runtime.

B. Error Reports and Patches

Current best practices dictate that program crashes on end-
user systems can be reported back to the software developers.
The developers use these reports to prioritize and address bugs
and to produce software updates that improve the stability and
security of their products.

Error reports contain machine state information such as the
instruction pointer plus stack and register contents at the time
of the crash. The reports are sent to a server that performs two
tasks: it uses debug information to determine the source code
location of the crash and it matches the new error report with
previous reports to rank bugs by frequency.

Unfortunately, software diversity interferes with the pro-
cessing of error reports. The randomization of the program
implementation makes error reports diverge even if two users
trigger the exact same error. Programs are typically distributed
without debugging information and therefore report crashes
using the instruction pointer plus the register and stack contents.
Developers store a single copy of the debugging information
for each software release to translate locations in the binary
into source code locations in a process known as symbolication.
With code layout randomization, however, the instruction
pointer corresponding to a particular source code line will vary
between variants. If not addressed, diversification interferes
with symbolication of error reports.

A straw-man solution is to generate or store debug infor-
mation for each program variant on the error reporting server.
Unfortunately, this is space consuming and impractical for
client-side diversification approaches. The alternative is to hide
the effects of diversification from error reporting frameworks.
Error reports can be transformed to a “canonical” version
matching what an undiversified copy of the program would
report for the same error. This requires a way to integrate with
existing error reporting mechanisms and meta-data to drive the
transformations.

Diversification approaches that randomize the on-disk
representation of programs also interfere with software patches.
If each user has a unique program copy, patches must be
customized to each individual copy. Neither of these challenges
have received much attention to date.

C. Implementation Disclosure

Besides low entropy, information leakage threatens the
effectiveness of diversified defenses. Information leaks are
accidental disclosures of the layout or contents of process or
kernel memory [56]. ASLR shifts all addresses by the same
amount such that relative distances within a library remain
unchanged; this means that an attacker can infer the entire
code layout if a single code address is disclosed.

Finer-grained code randomization also affects the relative
distances between code fragments. Bypassing such random-
ization requires disclosure of multiple code addresses. Snow
et al. [60] demonstrate a just-in-time code-reuse attack that
uses JavaScript to discover the code layout (via a bounds
checking error in C++ code) and to build a customized ROP
chain, thus defeating fine-grained code-diversification. Bittau et
al. [9] perform a “blind return-oriented-programming” attack by
exploiting a buffer overflow in the nginx web-server and using
the response (crash, no crash) as a side channel to incrementally
guess the position of a required gadget set in fully diversified
binaries. These attacks call for work on new types of diversity
that prevent or tolerate (partial) information disclosure.

Crane et al. [20] propose that diversified binaries be “booby-
trapped” with code that detects guessing attacks. A booby-trap
is an instruction sequence beginning with an unconditional
branch past its last instruction so the trap is skipped during
normal execution; attempts to execute code at random addresses,
however, will eventually trigger the trap. Traps help alert
defenders to attacks and may even allow programs to operate
through attacks by recovering corrupted state.

D. Measuring Efficacy

The study of how diversity affects the adversary’s effort is in
its infancy. Many of the works we survey report several detailed
performance metrics on standardized benchmarks. This is in
stark contrast to the security evaluations which are frequently
qualitative, i.e., based on a logical argument on why attacks
fail, an analytical calculation of the resulting entropy, or the
demonstration of concrete attacks that fail.

Few studies quantify the impact of diversification—e.g.,
by counting surviving gadgets when defending against ROP
attacks [31] or the percentage of code that can be matched
after diversification [17]. On a similar note, entropy results
determine the space of a diversified population, but there are
no studies that show how well program variants are distributed
within that space. This matters because some transformations
are not always legal; performing equivalent instruction selection
on a program with thousands of functions can generate many
variants in principle, but if only a handful of functions use
instructions that can be substituted, then the resulting population
is not sufficiently diverse.

We believe the reasons for this are twofold. First, there
is a lack of consensus on acceptable methodologies. Second,
having a set of publicly available tools to evaluate and compare
approaches with would reduce the effort to evaluate security.
Numerous papers have been published on how to perform
sound performance evaluations; we think a similar effort should
be undertaken with respect to efficacy metrics for diversified
software.
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E. Diversity as a Counter to Side Channel Attacks

Covert channels exist whenever computation has observable
side-effects. For example, the time to divide two numbers
depends on the operands and the time to access a memory
location depends on the state of the memory hierarchy.

Attackers can build statistical models that correlate sensitive
program data, e.g., cryptographic keys, with side-effects by
observing the target program operating on known inputs. The
growing popularity of cloud computing, which co-locates
computation of its customers on shared hardware, only increases
the need for a solution to this long standing problem.

One of the key requirements to build a side-channel attack
is the ability to accurately replicate the victim environment.
However, software diversity breaks exactly this assumption.
Attackers no longer have easy access to an exact copy of
the target program. Consequently, we expect that existing and
side-channel specific randomizing transformations provides an
effective counter to this long standing threat.

VII. CONCLUSIONS

The overall idea of software diversity is simple. However,
we show how the interactions with current development,
distribution, and security practices are not. We bring clarity
to this complex field by treating the major axes of software
diversity independently while using a consistent terminology.

There is a tension between pre-distribution and post-
distribution diversification approaches. The former are easy to
implement portably, support the widest range of transformations,
and can defend against client-side attacks. The latter support
legacy and proprietary software, amortize diversification costs,
and require no changes to current distribution mechanisms. In
terms of performance, approaches of both kinds can deliver
acceptable overheads (as low as 1-5%). The two fastest binary
rewriters may not preserve program semantics [47], [21] though.
With two exceptions [21], [40] research in software diversity
does not consider compatibility with security features such as
crash reporting and code signing.

Naturally, the research in software diversity can be extended;
we point out several promising directions. There is currently a
lack of research on hybrid approaches combining aspects of
compilation and binary rewriting to address practical challenges
of current techniques. We also point to the need to address
memory disclosure attacks on diversity and finally argue that
diversified software may provide an effective defense against
side channel attacks.
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