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Abstract—The widespread dependency on open-source soft-
ware makes it a fruitful target for malicious actors, as demon-
strated by recurring attacks. The complexity of today’s open-
source supply chains results in a significant attack surface, giving
attackers numerous opportunities to reach the goal of injecting
malicious code into open-source artifacts that is then downloaded
and executed by victims.

This work proposes a general taxonomy for attacks on open-
source supply chains, independent of specific programming
languages or ecosystems, and covering all supply chain stages
from code contributions to package distribution. Taking the form
of an attack tree, it covers 107 unique vectors, linked to 94 real-
world incidents, and mapped to 33 mitigating safeguards.

User surveys conducted with 17 domain experts and 134
software developers positively validated the correctness, compre-
hensiveness and comprehensibility of the taxonomy, as well as its
suitability for various use-cases. Survey participants also assessed
the utility and costs of the identified safeguards, and whether they
are used.

Index Terms—Open Source, Security, Software Supply Chain,
Malware, Attack

I. INTRODUCTION

Software supply chain attacks aim at injecting malicious
code into software components to compromise downstream
users. Recent incidents, like the infection of SolarWind’s
Orion platform [1], downloaded by approx. 18,000 customers,
including government agencies and providers of critical infras-
tructure, demonstrate the reach and potential impact of such
attacks. Accordingly, software supply chain attacks are among
the primary threats in today’s threat landscape, as reported
by ENISA [2] or the US Executive Order on Improving the
Nation’s Cybersecurity [3].

This work focuses on the specific instance of attacks on
Open-Source Software (OSS) supply chains, which exploit the
widespread use of open-source during the software develop-
ment lifecycle as a means for spreading malware. Consider-
ing the dependency of the software industry on open-source
– across the technology stack and throughout the development
lifecycle, from libraries and frameworks to development, test
and build tools, Ken Thompson’s reflections [4] on trust (in
code and its authors) is more relevant than ever. Indeed,
attackers abuse trust relationships existing between the dif-
ferent open-source stakeholders [5], [6]. The appearance and
significant increase of attacks on OSS throughout the last
few years, as reported by Sonatype in their 2021 report [7],
demonstrate that attackers consider them a viable means for
spreading malware.

Recently, industry and government agencies increased their
efforts to improve software supply chain security, both in
general and in regards to open-source. MITRE, for instance,
proposes an end-to-end framework to preserve supply chain
integrity [8], and the OpenSSF develops the SLSA framework,
which groups several security best-practices for open-source
projects [9]. Academia contributes an increasing number of
scientific publications, many of which get broad attention in
the developer community, e.g., [10] or [11].

Nevertheless, we observed that existing works on open-
source supply chain security lack a comprehensive, com-
prehensible, and general description of how attackers inject
malicious code into OSS projects, that is independent of
specific programming languages, ecosystems, technologies,
and stakeholders.

We believe a taxonomy classifying such attacks could be of
value for both academia and industry. Serving as a common
reference and clarifying terminology, it could support several
activities, e.g., developer training, risk assessment, or the
development of new safeguards. As such, we set out to answer
the following research questions:
RQ1 – Taxonomy of attacks on OSS supply chains

• RQ1.1 – What is a comprehensive list of general attack
vectors on OSS supply chains?

• RQ1.2 – How to represent those attack vectors in a
comprehensible and useful fashion?

RQ2 – Safeguards against OSS supply chain attacks
• RQ2.1 – Which general safeguards exist, and which

attack vectors do they address?
• RQ2.2 – What is the utility and cost of those safeguards?
• RQ2.3 – Which safeguards are used by developers?
To answer those questions, we first study both the scientific

and grey literature to compile an extensive list of attack
vectors, including ones that have been exploited, but also non-
exploited vulnerabilities and plausible proofs-of-concept. We
then outline a taxonomy in the form of an attack tree. From the
identified attacks, we list the associated safeguards. Finally,
we conduct two user surveys aiming to validate the attack
taxonomy and to collect qualitative feedback regarding the
utility, costs, awareness, and use of safeguards.

To this extent, the main contributions of our work are as
follows:

• A taxonomy of 107 unique attack vectors related to
OSS supply chains, taking the form of an attack tree and
validated by 17 domain experts in terms of complete-
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ness, comprehensibility, and applicability in different use
cases.

• A set of 33 safeguards geared towards the proposed
taxonomy, and qualitatively assessed regarding utility
and costs by the same 17 domain experts.

• The qualitative assessment of 134 developers on the
awareness of selected high-level attack vectors and the
corresponding level of protection.

Using an interactive visualization of the attack tree, the
taxonomy with descriptions, examples of real-world attacks,
references, and associated safeguards can be explored online1.

The remainder of the paper is organized as follows. Sec-
tion II introduces basic concepts and elements of OSS supply
chains, the assumed attacker model, and the concept of attack
trees. Section III describes the methodology applied, com-
prising the three steps Systematic Literature Review (SLR),
modeling of taxonomy and safeguards, and survey design.
Section IV details the proposed taxonomy and presents the
results of the expert and developer validation. Section V
introduces the safeguards associated with the aforementioned
attack vectors and presents both the experts’ feedback on their
utility and costs, and the developers’ feedback on awareness
and use. Section VI discusses the differences between pro-
gramming languages and highlights the benefits of our work on
research. Section VII provides demographic information about
the survey participants. Section VIII mentions related works,
and Section IX discusses threats to the validity of our work.
Finally, the conclusion and outlook are provided in Section X.

II. BACKGROUND

This section describes, at a high level, the systems and stake-
holders involved in the development, build, and distribution
of OSS artifacts (cf. Figure 1). They are constituting elements
of OSS supply chains and contribute to their attack surface.
They commonly interact in a distributed setting [12], even if
the specifics differ from one OSS project to another.

The section concludes with a description of the attacker
model considered throughout the paper, and a summary of the
concept of attack trees.
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Fig. 1: Stakeholders, systems and dataflows related to the
development, build and distribution of OSS artifacts.

1https://sap.github.io/risk-explorer-for-software-supply-chains/

A. Systems

The systems considered comprise Version Control System
(VCS), build systems, and package repositories. They do not
necessarily correspond to concrete physical or virtual systems
providing the respective function but should be seen as roles,
multiple of which can be exercised by a single host or 3rd
party service.

Version Control Systems host the source code of the
OSS project, not only program code but also metadata, build
configuration, and other resources. They track and manage
all the changes of the codebase that happen throughout the
development process. Plain VCSs like Git do not require its
users to authenticate, but complementary tools and 3rd party
services offer additional functionalities (e.g., issue trackers) or
security controls (e.g., authentication, fine-grained permissions
or review workflows).

Build Systems take a project’s codebase as input and
produce a binary artifact, e.g., an executable or compressed
archive, which can be distributed to downstream users for easy
consumption. The build commonly involves so-called depen-
dency or package managers [13], [14], e.g., pip for Python,
which determine and download all dependencies necessary for
the build to succeed, e.g., test frameworks or OSS libraries
integrated into the project at hand. Continuous Integration
(CI)/Continuous Delivery (CD) pipelines, running on build
automation tools like Jenkins, automate the test, build, and
deployment of project artifacts.

Distribution Platforms distribute pre-built OSS artifacts
to downstream users, e.g., upon the execution of package
managers or through manual download. Our definition does
not only cover well-known public package repositories like
PyPI or Maven Central but also internal and external mirrors,
Content Delivery Network (CDN) or proxies.

Workstations of OSS Maintainers and Administrators.
OSS project maintainers and administrators of the abovemen-
tioned systems have privileged access to sensitive resources,
e.g., the codebase, a build system’s web interface, or a package
repository’s database. Therefore, their workstations are in the
scope of the attack scenario.

B. Stakeholders

The stakeholders considered comprise OSS project main-
tainers, contributors, and consumers – as well as administrators
of various systems or services involved. Again, they should be
understood as roles [15], multiple of which can be assumed
by a given individual. For example, maintainers of an OSS
project typically consume artifacts of other projects.

Contributors contribute code to an OSS project, with
limited (read-only) access to project resources. They typically
submit contributions to the VCS via merge requests, which
are reviewed by project maintainers prior to being integrated.

OSS Project Maintainers have privileged access to project
resources, e.g., to review and integrate contributors’ merge
requests, configure build systems and trigger build jobs, or
deploy ready-made artifacts on package repositories. The
real names of project collaborators, both contributors and
maintainers, are not necessarily known. Accounts, including

https://sap.github.io/risk-explorer-for-software-supply-chains/
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anonymous ones, gain trust through continued contributions of
quality, thanks to which they may be promoted to maintainers
(known as a meritocracy).

System and Service Administrators have the responsi-
bility to configure, maintain, and operate any of the above-
mentioned systems or services, e.g., employees of 3rd-party
Git hosting providers, members of OSS foundations that
operate own build systems for their projects, or employees
of companies running package repositories like npm.

Downstream Users consume OSS project artifacts, e.g., its
source code from the project’s VCSs (e.g., through cloning), or
pre-built packages from distribution platforms. In the context
of downstream development projects, the download is typically
automated by package managers like pip or npm, which
identify and obtain dozens or hundreds [16], [17] of the
project’s direct and transitive dependencies.

C. Risks of Open-Source Software Supply Chains

OSS is widely used by organizations and individuals across
the technology stack and throughout the software develop-
ment lifecycle. Package managers automate its download and
installation to a great extent, e.g., when resolving transitive
dependencies or updating versions.

The above-described systems are inherently distributed, and
the stakeholders are partly unknown or anonymous. They
exist for every single open-source component used, which
multiplies an attack surface having both technical and social
facets. Moreover, even heavily used open-source projects
receive only little funding and contributions [18], making it
difficult for maintainers to securely run projects and increasing
their susceptibility to social-engineering attacks, e.g., when
reviewing contributions.

Downstream consumers have no control over and limited
visibility into given projects’ security practices. The sheer
number of dependencies [16] makes rigorous reviews imprac-
tical for a given consumer, forcing them to trust the community
for a timely detection of vulnerabilities and attacks.

Attackers’ primary objectives are data exfiltration, droppers,
denial of service, or financial gain [19]. Hence, the larger the
user base, direct and indirect, the more attractive an open-
source project becomes for attackers. As in other adversarial
contexts, attackers require finding single weaknesses, while
defenders needs to cover the whole attack surface, which in
this case spans the whole supply chain.

D. Attack Tree

Attack trees [20], [21] are intuitive and systematic represen-
tations of attacker goals and techniques, and support organi-
zations in risk assessment, esp. with regards to understanding
exposure and identifying countermeasures.

The root node of an attack tree represents the attacker’s
top-level goal, which is iteratively refined by its children into
subgoals. Depending on the degree of refinement, the leaves
correspond to more or less concrete and actionable tasks.

As taxonomies require assigning instances to exactly one
class, we only consider disjunctive refinement, where child
nodes represent alternatives to reach the parent goal.

E. Attacker Model

The development of the taxonomy was based on the follow-
ing assumptions and attacker model.

The attacker’s top-level goal is to place malicious code in
open-source artifacts such that it is executed in the context of
downstream projects, e.g., during its development or runtime.
Such malware can exfiltrate data, represent or open a backdoor,
as well as download and execute second-stage payload (e.g.,
cryptominers [19]). Targeted assets can belong both to de-
velopers of downstream software projects, or their end-users,
depending on the attacker’s specific intention. However, the
focus of the taxonomy is not on what malicious code does,
but how attackers place it in upstream projects.

Insider attacks are out of scope, i.e., adversaries are neither
maintainers of the attacked open-source project nor members
or employees of 3rd party service providers involved in the
development, build, or distribution of project artifacts. As such,
attackers do not have any privileged access to project resources
like build jobs or infrastructure like the server or database
underlying code repositories.

Initially, they only have access to publicly available in-
formation and publicly accessible resources, which they can
collect and analyze following the Open Source Intelligence
(OSINT) [22] approach. Of course, due to the nature of open-
source projects, many project details are freely accessible,
e.g., project dependencies, build information, or commit and
merge request histories. Attackers can interact with any of
the stakeholders and resources depicted in Figure 1, e.g., to
communicate with maintainers using merge requests or issue
trackers or to create fake accounts and projects.

III. METHODOLOGY

The methodology adopted to answer the above-mentioned
research questions comprises three phases (cf. Figure 2).

First, we review scientific and grey literature to collect an
extensive list of attack vectors on OSS supply chains.

Second, starting from the vectors described in the literature
and the OSS supply chain elements introduced in Section II,
we abstract from specific programming languages or ecosys-
tems, perform threat modeling, and create a taxonomy that
takes the form of an attack tree. Also, we identify and classify
safeguards mitigating those vectors.

Third, to validate the proposed taxonomy and the list of
safeguards, we design and run two user surveys: with experts
in the domain of OSS supply chain security, and with software
developers, which are heavy consumers of OSS.

A. Systematic Literature Review

The SLR accomplishes two goals. First, through exploring
the state-of-the-art of OSS supply chain security, we identify
and specify the abovementioned research questions. Second,
it supports identifying and collecting relevant attack vectors
and suitable safeguards. The SLR itself follows a three step
methodoloy comprising planning, conducting, and report-
ing [23] [24] depicted in Figure 2 and described hereafter.
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Fig. 2: Our methodology comprises a literature review, the
modeling of taxonomy & safeguards, and the validation.

Search Strategy: This step defines the search terms, the
query used on the identified resources, and the inclusion
criteria. For our purpose, we used the following query to search
for the terms anywhere in the documents:

("open source" OR "open-source" OR "OSS" OR "free"
OR "free/libre" OR "FLOSS) AND "software" AND
("supply chain" OR "supply-chain") AND ("security"
OR "insecurity" OR "attack" OR "threat"
OR "vulnerability")

The four digital libraries used to collect the primary studies
are2: Google Scholar (980 results), arXiv (6), IEEExplore (25)
and ACM Digital Library (160). After removing duplicates
from the total of 1171 search results, 1025 papers remained.

We only included peer-reviewed articles in journals and
conferences, technical reports, and Ph.D./Master theses written
in English and published before March 2022. Also, we only

2Their URLs can be found in Appendix B

included studies related to security aspects, threats and mal-
ware in the areas of OSS development, VCS, build systems and
package repositories, as well as malware detection and soft-
ware supply chain security. The application of those inclusion
criteria reduced the 1025 results obtained in the previous phase
to 99 papers. Discarded documents concern security aspects
in physical or hardware supply chains, or general discussions
about emerging technologies (of which OSS security is an
example).

We then applied the snowballing technique on all the
remaining works to find resources missed during the initial
search, thereby applying the same inclusion criteria. This
resulted in the addition of another 84 new studies.

Fig. 3: No. selected scientific articles per year of publication.

Data Extraction: The selection process resulted in a total of
183 scientific works, mostly from the last few years (cf. Fig-
ure 3), which were carefully reviewed to extract information
about common threats, attack vectors, and related safeguards.
The complete list of the selected works is accessible online 3.

B. Grey Literature

In addition to scientific literature, especially to cover as
many real-world attacks and vulnerabilities as possible, we
looked at grey literature like blog posts, whitepapers, or
incident reports. To this end, we periodically reviewed several
news aggregators and blogs (cf. Appendix B). Also, we used
the same search query as in Section III-A for searching on
Google. All results were filtered using the selection criteria
from Section III-A, and the snowballing technique was applied
to further extend the set of sources.

C. Analysis and Modeling of the Attack Scenario

We perform the analysis of the OSS supply chain depicted
in Figure 1 to classify the identified attack vectors during the
SLR. Then we model such attacks using the semantic of attack
trees. The goal of these two steps is to answer to RQ1.2, i.e.,
propose a taxonomy of OSS supply chain attacks.

The analysis of the attack scenario in the context of OSS
development started from the identification of the stakehold-
ers (i.e., actors), systems, as well as their relationship (i.e.,
channels). We have described such elements in Section II
and depicted in Figure 1. This analysis was useful to identify
potential categories to structure the identified attack vectors.

During the modeling phase, we adopted an attack-centric
methodology whose purpose is to characterize the hostility of

3https://doi.org/10.5281/zenodo.6395965

https://doi.org/10.5281/zenodo.6395965
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the environment and the attack complexity for exploiting a
system vulnerability [25]. In particular, we performed closed
card-sorting in the form of a tree-test intending to build a
taxonomy of OSS supply chain attacks as an attack tree.
Closed card-sorting is an information architecture technique
taken from User eXperience (UX) design, in which the partic-
ipants are asked to structure a given set of information [26]. A
tree-test is a particular case of a card-sorting problem, where
the information is structured in a tree.

For the attack tree modeling, we used as a starting point
the attack tree proposed by Ohm et al. [19], whose root node
is Injection of Malicious Code (into dependency tree). Thanks
to a rigorous structure, deeper refinement and the SLR, we
identified many additional attack vectors (107 instead of 19).

The main criteria to structure the attack tree were: degree of
interference with existing ecosystems (1st-level nodes), stages
of the software supply chain (i.e., source, build, distribute),
and the system and stakeholders involved in each stage.

The initial naming and arrangement have been changed to
reflect the expert feedback described in Section IV-B. The
refined version of our initial attack tree is depicted in Figure 4.

D. Identification and Classification of Safeguards

To identify general safeguards, also in this case we reviewed
the scientific and grey literature described in Section III-B.
Then, each safeguard is classified according to control type,
stakeholder involvement, and mitigated attack vector(s).

Control type classification follows the well-known distinc-
tion of directive, preventive, detective, corrective, and recovery
controls [27]. However, since our focus is on how malicious
code – no matter its actual intent – can be injected into open-
source and corresponding safeguards explains why recovery
controls were out of scope.

Stakeholder involvement reflects which role(s), maintain-
ers, system administrators or consumers, can or must become
active to effectively implement a given control.

Finally, each safeguard has been assigned to those node(s)
of the attack tree that it mitigates (partially or fully). To reflect
the broader or narrower scope, they were assigned to the tree
node with the least possible depth.

E. Survey Methodology

We conducted two online surveys targeting two different
audiences. First, we addressed experts in the domain of soft-
ware supply chain security to validate the proposed taxonomy
of attack vectors (RQ1) and to collect feedback regarding the
utility and costs of safeguards (RQ2.2). Second, we addressed
developers to rate their use of attack vectors and perceived
protection level. Optionally, they could additionally assess the
taxonomy and the use and awareness of safeguards from the
perspective of open-source consumers (RQ2.3).

Questionnaire Design and Development: We conducted a
cross-sectional survey [28] consisting of the following four
parts.

Demographics: This part collects background informa-
tion about survey participants, especially their skillset to
check whether our objectives to address security experts and
developers are met, but also programming languages used, or
whether they actively participate in OSS projects. The results
are discussed in Section VII.

Taxonomy: In the expert survey, this part was meant to
validate and assess the proposed taxonomy. Before displaying
our proposed taxonomy in its entirety, we used tree-testing [29]
to capture how easily users find tree nodes. This helped
validate the nodes’ parent-child relationships. Afterwards, par-
ticipants were asked to explore an interactive visualization of
the complete taxonomy, and then to rate its structure, node
names, coverage, and its usefulness (to support different use-
cases) on a Likert scale from 1 (low) to 5 (high).

In the developer survey, this part started with a presentation
of the taxonomy’s first-level nodes, including attack vector
names and descriptions. Participants were asked whether they
are aware of such attacks and whether they – or their organiza-
tion – use any mitigating safeguards. Optionally, participants
could continue this part to explore the taxonomy and rate its
comprehensibility and usefulness.

Safeguards: In the expert survey, the participants assessed
the utility and costs of the selected safeguards. To this end,
they were grouped by and presented according to the stake-
holder roles involved in their implementation.

This entire part was optional in the developer survey.
When opting-in, respondents only rated safeguards relevant
according to their role in open-source projects (if any). When
shown, survey participants provided feedback whether they use
a given safeguard and its perceived costs (Likert scale).

Pilot Survey and Pretest: Interviews with two experts in
user research and UX provided us feedback on the suitability
and understandability of the survey. Their main suggestions
were to shorten texts and improve content presentation, esp.
of the tree-testing content. After implementing their feedback,
we performed a pretest of the expert survey with 37 re-
searchers from academia (i.e., Ph.D. students, researchers, and
professors), and the developer survey with 14 master students.
The feedback received from this pretest suggested further
shortening texts, improving some questions, and adjusting the
appearance of buttons.

Sampling: For the selection of participants in both ques-
tionnaires, we adopted the snowball sampling [30] technique.
It consisted of inviting an initial group of participants, which
were asked to further share the invitation in their appropriate
network of knowledge. Due to this sampling technique, it is
not possible to compute the response rate.

The initial list of domain experts was composed of authors
of works analyzed during the SLR, as well as experts from
industry and academia from our network. We included experts
who performed relevant works in the context of OSS supply
chain security (e.g, scientific publications, initiatives/projects
of software foundations or industry). Similarly, the initial list
of software developers has been created starting from our
network of knowledge of practicioners.

The channels used to reach the participants have been
emails, Linkedin, and direct recruitment during presentations.
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The expert survey campaign began on 22 July 2021, the one
for developers on 19 October 2021. Both questionnaires were
closed for analysis on 24 November 2021, and reached a total
of 17 and 134 respondents respectively.

Survey Procedure and Data Protection: Rather than using
existing survey tools or services, we developed a custom
solution. SurveyJS4 was used to design the survey structure
and content, which we exported as JSON file. This file was
hosted using GitHub Pages, together with SurveyJS’ runtime
library and other resources. Participant answers were sent to
a custom Google AppScript, which stored them in a Google
spreadsheet. Answers were sent after each survey page and
grouped using a random number generated in the beginning.

Applying the principle of data minimization, we did not
collect IP addresses, names or other Personally Identifiable
Information (PII). We also did not have access to 3rd party
server logs. Moreover, the decoupling of survey frontend and
backend made that the first 3rd party service provider only
knows survey structure and content, while the second only sees
(encoded) answers without understanding their semantics.

IV. ATTACK TAXONOMY AND ITS VALIDATION

This section presents the taxonomy built from 107 unique
attack vectors collected through the review of scientific and
grey literature. Following, it summarizes the results of its
validation by domain experts, and the responses of software
developers regarding problem awareness, understandability,
and usefulness of our taxonomy.

A. Taxonomy of Attacks on OSS Supply Chains

The attackers’ high-level goal is to conduct a supply chain
attack by injecting malicious code5 into an OSS project such
that it is downloaded by downstream consumers, and executed
upon installation or at runtime. They can target any kind of
project (e.g., libraries or word processors), direct or indirect
downstream consumers, as many as possible, or very specific
ones. The latter is possible by conditioning the execution
of malicious code, e.g., on the lifecycle phase (install, test,
etc.), application state, operating system, or properties of the
downstream component it has been integrated into [19].

The entire taxonomy unfolding below this high-level goal is
depicted in Figure 4 and summarized hereafter, whereby the
1st-level child nodes of the tree reflect different degrees of
interference with existing packages.

Develop and Advertise Distinct Malicious Package from
Scratch covers the creation of a new OSS project, with the
intention to use it for spreading malicious code from the
beginning or at a later point in time. Besides creating the
project, the attacker is required to advertise the project to
attract victims. Real-world examples affect PyPI, npm, Docker
Hub or NuGet [19], [59]–[65].

Create Name Confusion with Legitimate Package covers
attacks that consist of creating project or artifact names that

4https://surveyjs.io/
5This does not only cover the addition of program code but malicious

changes in general, e.g., the introduction of new malicious dependencies or the
(re)introduction of vulnerabilities, e.g., the removal of authorization checks.

resemble legitimate ones, suggest trustworthy authors, or play
with common naming patterns. Once a suitable name is found,
the malicious artifact is deployed, e.g., in a source or package
repository, in the hope of being consumed by downstream
users. As the deployment does not interfere with the resources
of the project that inspired the name (e.g., legitimate code
repository, maintainer accounts) the attack is relatively cheap.

Child nodes of this attack vector relate to sub-techniques
applying different modifications to the legitimate project name:
Combosquatting [74] adds pre or post-fixes, e.g., to indi-
cate project maturity (dev or rc) or platform compatibility
(i386). Altering Word Order [74] re-arranges the word order
(test-vision-client vs. client-vision-test).
Manipulating Word Separators [74] alters or adds word sep-
arators like hyphens (setup-tools vs. setuptools).
Typosquatting [5], [15], [19], [71], [74], [75] exploits ty-
pographical errors (dajngo vs. django). Built-In Pack-
age [74] replicates well-known names from other contexts,
e.g., built-in packages or modules of a programming lan-
guage (subprocess for Python). Brandjacking [164] creates
the impression a package comes from a trustworthy author
(twilio-npm). Similarity Attack [165] creates a mislead-
ing name in a way different from the previous categories
(request vs. requests).

Subvert Legitimate Package covers all attacks aiming to
corrupt an existing, legitimate project, which requires com-
promising one or more of its numerous resources depicted in
Figure 1. As a result, this subtree is much larger compared
to the previous ones, esp. because subtrees related to user
and system compromises occur multiple times in the different
supply chain stages. The remainder of this section is dedicated
to sub-techniques of this first-level node.

Inject into Sources of Legitimate Package: It relates to the
injection of malicious code into a project’s codebase. For the
attacker, this has the advantage to affect all downstream users,
no matter whether they consume sources or pre-built binary
artifacts (as part of the codebase, the malicious code will be
included during project builds and binary artifact distribution).

This vector has several sub-techniques. Taking the role of
contributors, attackers can use hypocrite merge requests to
turn immature vulnerabilities into exploitable ones [11], or
exploit IDE rendering weaknesses to hide malicious code,
e.g., through the use of Unicode homoglyphs and control
characters [10], or the hiding and suppression of code dif-
ferences [166]. To contribute as maintainer requires to obtain
the privileges necessary for altering the legitimate project’s
codebase, which can be achieved in different ways. Using So-
cial Engineering (SE) techniques on legitimate project main-
tainers [167], [168], by taking over legitimate accounts (e.g.,
reusing compromised credentials [169]), or by compromising
the maintainer system (e.g., exploiting vulnerabilities [113]).
The latter can also be achieved through a malicious (OSS)
component, e.g., IDE plugin, which is reflected through a
recursive reference to the root node.

The legitimate project’s codebase can also be altered by
tampering with its VCS, thus, bypassing a project’s established
contribution workflows. For instance, by compromising system
user accounts [115], [116], or by exploiting configuration/-

https://surveyjs.io/
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Fig. 4: Refined version of the taxonomy for OSS supply chain attacks. It takes the form of an attack tree with the attacker’s
top-level goal to inject malicious code into open-source project artifacts consumed and executed by downstream users. This
version reflects the feedback of 17 domain experts on the initial version, collected through an online survey. Subtrees for
user and system compromises exist multiple times, only their first occurrence is expanded. The grey, numbered rectangles
illustrate the different criteria used for structuring the tree. Each node has references to both Scientific Literature (SL) and
Gray Literature (GL).
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software vulnerabilities [118], [170], [171], an attacker could
access the codebase in insecure ways.

Inject During the Build of Legitimate Package: Greatly
facilitated by language-specific package managers like Maven
or Gradle for Java, it became common to download pre-
built components from package repositories rather than OSS
project’s source code from its VCS. Therefore, the injection
of malicious code can happen during the build of such com-
ponents before their publication [6], [119], [120]. Though the
spread is limited compared to injecting into sources, the ad-
vantage for the attacker is that the detection of malicious code
inside pre-built packages is typically more difficult, especially
for compiled programming languages. One sub-technique is
running a malicious build job to tamper with system resources
shared between build jobs of multiple projects [123] (e.g., the
infection of Java archives in NetBeans projects [125]). An
attacker can also tamper the build job as maintainer, e.g.,
by taking over legitimate maintainer accounts, becoming a
maintainer, or compromising their systems (cf. XCodeGhost
malware [127]). Similarly, the attacker could comprise build
systems, esp. online accessible ones, e.g., by compromis-
ing administrator accounts [126] or exploiting vulnerabili-
ties [129], [172].

Distribute Malicious Version of Legitimate Package: Pre-
built components are often hosted on well-known package
repositories like PyPI or npm, but also on less popular reposi-
tories with a narrower scope. In addition, the components can
be mirrored remotely or locally, made available through CDNs
(e.g., in the case of JavaScript libraries), or cached in proxies.
This attack vector and its sub-techniques cover all cases where
attackers tamper with mechanisms and systems involved in the
hosting, distribution, and download of pre-built packages.

Dangling references (re)uses resource identifiers of or-
phaned projects [144]–[146], e.g., names or URLs. Mask legit-
imate package [147] targets package name or URL resolution
mechanisms and download connections. Their goal is the
download of malicious packages by compromising resources
external to the legitimate project. This includes Man-In-The-
Middle (MITM) attacks, DNS cache poisoning, or tampering
with legitimate URLs directly at the client [173]. Particularly,
package managers follow a (configurable) resolution strategy
to decide which package version to download, from where,
and the order of precedence when contacting multiple repos-
itories. Attackers can abuse such resolution mechanisms and
their configurations [152], [174]. Attackers can also prevent
updates to non-vulnerable versions by manipulating package
metadata [154], e.g., by indicating an unsatisfiable depen-
dency for newer versions of a legitimate package. Finally,
the involvement of systems and users in package distribution
results in attack vectors similar to previous ones. Attackers
can take the role of legitimate maintainers, thus, distribute as
maintainer, e.g., by taking over package maintainer accounts
(e.g., eslint [156]), the second most common attack vector
after typosquatting [19]. They can also compromise maintainer
systems, or directly inject into the hosting system, e.g., by
compromising administrator accounts [175] or exploiting vul-
nerabilities [160]–[162], [176].

Response to RQ1.1: Through the review of 183
scientific papers as well as grey literature, we identified
and generalized 107 unique attack vectors on OSS
supply chains, supported by 94 real-world attacks or
vulnerabilities.

B. Validation and Assessment by Domain Experts
The initial version of the taxonomy was validated and

assessed by 17 domain experts. Their feedback has been
retrofitted resulting in the taxonomy depicted in Figure 4.

Validation: This section reports expert feedback on the
comprehensiveness of attack vectors, and the correctness,
comprehensibility, and usefulness of the taxonomy.

Before having seen the taxonomy in its entirety, the tree-
testing required experts to assign attack vectors to the first level
nodes of the initial taxonomy. Over a total of 311 assignments
by all experts, 234 (75%) matched the structure of the initial
taxonomy, while 77 (25%) did not, which shows an overall
agreement on the structure.

Following, the experts were presented with the initial ver-
sion of the entire taxonomy, and asked to assess different
qualities using a Likert scale ranging from 1 (low) to 5 (high).

14 (82%) experts agreed to the overall structure with a rating
of 4 or 5, slightly higher compared to the results of the tree-
test. This could be due to some node names not being self-
explanatory enough when shown with too little context.

Experts were further asked to rate the correctness of the
taxonomy’s 1st-level nodes in regards to naming, tree location,
and sub-tree structure. All the first-level nodes received an
overall good agreement with naming, categorization, and sub-
tree structure, except Develop and Advertise Distinct Mali-
cious Package from Scratch. The latter only received neutral
feedback on its sub-tree, a light agreement with its categoriza-
tion, and a clear disagreement with its initial naming.

12 (71%) of the experts agreed with the completeness of
the attack tree.

Usefulness and Use-Cases: In this part of the questionnaire,
experts rated the usefulness and possible use cases of the
proposed taxonomy.

15 (88%) rated the usefulness of the taxonomy to under-
stand the attack surface of the OSS supply chain with a 4 or 5.
Fewer experts considered it being useful to understand attacker
tactics and techniques (12 (71%)) or attackers’ cost/benefits
considerations (5 (29%)).

Regarding the expert options about possible uses of the
proposed taxonomy, the Top-3 use-cases are threat modeling,
awareness and training and risk assessment. Another possible
use-case, though not included in the survey, is to scope
penetration tests.

C. Validation and Assessment by Developers
The initial version of the taxonomy has also been validated

and assessed by 134 software developers in regards to the
awareness of main attack vectors (1st-level taxonomy nodes),
whether those are mitigated (by themselves or their organiza-
tion), and – optionally – the understandability and utility of
the taxonomy.
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Awareness about Attack Vectors: The awareness of main
attack vectors ranged from 120 (90%) for Develop and Ad-
vertise Distinct Malicious Package from Scratch to 86 (64%)
for Inject During the Build of Legitimate Package.

For all but one vector, the majority of respondents answered
not to know whether they are protected. Only for Develop
and Advertise Distinct Malicious Package from Scratch, the
majority believes in being protected (52%). For both vectors
Inject During the Build and Distribute Malicious Version, 19
(14%) respondents were sure that no protection exists.

Taxonomy Understandability and Utility Assessment:
Among the 134 participants, 53 (40%) decided to perform
the optional assessment of the taxonomy’s understandability
and utility to understand the supply chain’s attack surface.
Considering a rating of 4 or 5, 41 (77%) found the taxonomy
understandable and 46 (87%) recognized it as a useful means
to create awareness.

Response to RQ1.2: The proposed taxonomy of at-
tacks on OSS supply chains takes the form of an attack
tree covering all 107 vectors identified beforehand.
Its validation by 17 domain experts and 134 software
developers showed overall agreement with structure
and naming, comprehensiveness, comprehensibility,
and suitability for use-cases like threat modeling,
awareness, training, or risk assessment.

V. SAFEGUARDS AND THEIR ASSESSMENTS

Subsection V-A starts with a short overview about safe-
guards against OSS supply chain attacks, which were identified
through literature review and generalized to become agnostic
of specific prg. languages or ecosystems. Subsections V-B and
V-C report the results of the two surveys conducted with
domain experts and software developers to validate and assess
the safeguards regarding different qualities, e.g., utility or cost.

A. List of Safeguards

In total, we identified 33 safeguards that partially or com-
pletely mitigate the before-mentioned attack vectors. Both
implementation and use of those safeguards can incur non-
negligible costs, also depending on the specifics of prg. lan-
guages and ecosystems at hand. Thus, the selection, combina-
tion and implementation of safeguards require careful planning
and design, to balance required security levels and costs.

The complete list of safeguards can be found in Table II
of Appendix A, including a classification after control type.
All safeguards are mapped to the vector(s) they mitigate,
some to the top-level goal due to (partially) addressing all
vectors (e.g., establishing a vetting process), others to more
specific subgoals. Some safeguards can be implemented by
one or more stakeholders, while others require the involvement
of multiple ones to be effective (e.g., signature creation and
verification).

Common Safeguards comprises 4 countermeasures that
require all stakeholders to become active, i.e., project main-
tainers, open-source consumers, and administrators (service

providers). For example, a detailed Software Bill of Materials
(SBOM) has to be produced and maintained by the project
maintainer [8], ideally using automated Software Composition
Analysis (SCA) tools. Following, the SBOM must be securely
hosted and distributed by package repositories, and carefully
checked by downstream users in regards to their security,
quality, and license requirements.

Safeguards for Project Maintainers and Administra-
tors comprises eight safeguards. Secure authentication, for
instance, suggests service providers to offer Multi-Factor
Authentication (MFA) or enforce strong password policies,
while project maintainers should follow authentication best-
practices, e.g., use MFA where available, avoid password
reuse, or protect sensitive tokens.

Safeguards for Project Maintainers includes seven coun-
termeasures. Generally, OSS projects use hosted, publicly ac-
cessible VCSs. Maintainers should then, e.g., conduct careful
merge request reviews or enable branch protection rules for
sensitive project branches to avoid malicious code contribu-
tions. As project builds may still happen on maintainers’ work-
stations, they are advised to use dedicated build services, esp.
ephemeral environments [9]. Additionally, they may isolate
build steps [123] such that they cannot tamper with the output
of other build steps.

Safeguards for Administrators and Consumers com-
prises five countermeasures. For example, both package repos-
itory administrators and consumers can opt for building pack-
ages directly from source code [177], rather than accepting
pre-built artifacts. If implemented by package repositories,
this would reduce the risk of subverted project builds. If
implemented by consumers, this would eliminate all risks
related to the compromise of 3rd-party build services and
package repositories, as they are taken out of the picture.

Safeguards for Consumers includes nine countermeasures
that may be employed by the downstream users. The con-
sumers of OSS packages may reduce the impact of malicious
code execution when consuming by isolating the code and/or
sandboxing it. Another example is the establishment of inter-
nal repository mirrors [178] of vetted components.

Response to RQ2.1: We identified 33 general safe-
guards to be used by the different stakeholders, mostly
detective or preventive ones, and mapped them to the
node(s) of the attack tree they mitigate partially or
fully.

B. Experts Validation and Assessment

This section presents the feedback of 17 experts regarding
the safeguards’ utility to mitigate risks, and their associated
costs for implementation and continued use.

In summary, almost all the safeguards received medium to
high utility ratings, while the cost ratings range from low (i.e.,
minimum mean value of 2.0) to very high (i.e., maximum
mean value of 4.8).

Table I provides all feedback collected for the 33 safeguards,
following a discussion of safeguards with the highest, re-
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spectively lowest Utility-to-Cost (U/C) ratios, and some other
interesting cases.

High U/C ratio. Both Protect production branch, Remove
un-used dependencies and Version pinning show the highest
U/C ratio, thus, are considered to be useful and cheap controls.
The use of Resolution Rules also shows a good U/C ratio,
even though one expert highlighted that ”very few projects”
use them, and that the implementation would require the
modification of all package managers. On average, Preventive
Squatting only received neutral ratings (3.1 for utility and 2.9
for cost) and also raised some concerns: two of the experts
highlighted that it could be good to ”try to prevent name
squatting, but hard to fully enforce” also due to legitimate
reasons for similar names (e.g., to help consumers identify
package relationships).

Low U/C ratio. Build Dependencies from Sources, report-
edly used by Google [177], received a very low utility rating
(mean and median of 3.0) and overall the lowest U/C ratio.
Considering that its use would prune the subtrees of both vec-
tors Inject During the Build and Distribute Malicious Version,
we expected a higher utility rating. One expert claimed that
”building from source only helps if someone scans and reviews
the code”. Possibly referring to flaky builds [179], another
expert highlighted that ”rebuilding software from source can
sometimes introduce problems”.

Merge Request Reviews received the highest average utility
rating (4.6), which could be because if malicious code is in-
jected into the sources, it is guaranteed to arrive at consumers,
no matter how they consume it.

Reproducible Builds received a very high utility rating (5)
from 10 participants (58.8%), but also a high-cost rating
(4 or 5) from 12 (70.6%). One expert commented that a
”reproducible build like used by Solarwinds now, is a good
measure against tampering with a single build system” and
another claimed this ”is going to be the single, biggest barrier”.

Scoped Packages, proposed as an effective safeguard against
Abuse of Dependency Resolution mechanisms [178], [180],
mostly received neutral ratings (3) for both utility and cost.

Response to RQ2.2: We have qualitatively assessed
the utility and costs of the 33 safeguards by surveying
17 experts. The three safeguards Protect production
branch, Remove un-used dependencies and Version
pinning showed the best U/C ratio while Build depen-
dencies from sources showed the worst.

C. Developers Validation and Assessment

In this optional part of the survey, developers were asked to
assess the usage and costs of a subset of safeguards that were
selected according to the stakeholders’ roles exercised in their
daily work (collected in the demographic part). Among the
total of 134 respondents, 30 assessed the Common Safeguards,
5 the Safeguards for Project Maintainers, 4 the Safeguards
for Maintainers and Administrators, 24 the Safeguards for
Administrators and Consumers, and 22 the Safeguards for
Consumers. Complete results are shown in Table I

Remove un-used dependencies is frequently used by devel-
opers, which contrasts with the observations of Soto-Valerio et
al. [181], who found that many Java projects had bloated (un-
used) dependencies. Other countermeasures that appear to be
widely used among the respondents are Version pinning and
Open-source vulnerability scanners, the latter of which does
not only address attacks, but also the use of dependencies with
known vulnerabilities.

Concerning the attack vector Create Name Confusion, where
70% of the developers claimed to be aware of the problem, we
can observe that corresponding safeguards Typo guard/Typo
detection and Preventive squatting the released package are
only used by a minority of respondents.

It is also noteworthy to mention that developers’ cost
ratings generally coincide with those of the domain expert.
Surprising exceptions are Application Security Testing and
Enstablish vetting process for Open-Source components hosted
in internal/public repositories, both having a median of 3 from
developers, compared to a median of 5 from experts.

Response to RQ2.3: 134 software developers provided
feedback on the use of safeguards. The three most-used
ones are Remove un-used dependencies, Version pin-
ning and Integrate Open-Source vulnerability scanner
into CI/CD pipeline.

VI. DISCUSSION

While the taxonomy presented in Section IV is largely
agnostic to ecosystems, this section discusses differences be-
tween ecosystems and highlights possible future research on
the basis of our work.

1) Differences between Ecosystems: As mentioned in Sec-
tion II-E, the attacker’s high-level goal is to inject malicious
code into open-source artifacts such that it is executed down-
stream. Several techniques to this end are indeed independent
of specific ecosystems/languages, e.g., Take-over Legitimate
Account or Become Maintainer.

Other attack vectors, however, are specific: Abuse Depen-
dency Resolution Mechanism attacks depend on the approach
and strategy used by the respective package manager to
resolve and download declared dependencies from internal and
external repositories. For instance, Maven, npm, pip, NuGet or
Composer were affected by the dependency confusion attack,
while Go and Cargo were not [180]. Several attacks below
Exploit Rendering Weakness depend on the interpretation and
visualization of (Unicode) characters by user interfaces and
compiler/interpreters [10]. Also name confusion attacks need
to consider ecosystem specificities, esp. Built-In Packages.

More differences exist when it comes to the execution or
trigger of malicious code, which is beyond the taxonomy’s
primary focus on code injection. For Python and Node.js,
this is commonly achieved through installation hooks, which
trigger the execution of code provided in the downloaded
package (e.g., in setup.py for Python or package.json
for JavaScript). A comparable feature is not present in most
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Protect production branch [85], [86] 4.2 4.0 2.0 2.0 2.10 Y N 1.8 2.0

Remove un-used dependencies [181] 4.3 5.0 2.1 2.0 2.05 Y N 2.0 2.0

Version pinning [15], [178], [180] 3.7 3.0 2.2 2.0 1.68 Y N 2.1 2.0

Dependency resolution rules 4.1 4.0 2.6 3.0 1.58 Y N 2.7 3.0
User account management [135] 3.9 4.0 2.6 3.0 1.50 Y N 2.3 2.5

Secure authentication (e.g., MFA, password recycle, ses-
sion timeout, token protection) [15], [66]

4.3 5.0 2.9 3.0 1.48 Y N 2.5 3.0

Use of security, quality and health metrics [40] 3.5 4.0 2.6 3.0 1.35 Y N 2.7 3.0

Typo guard/Typo detection [15], [182] 3.9 4.0 2.9 4.0 1.34 Y N 3.1 3.0
Use minimal set of trusted build dependencies in the
release job [123]

4.1 4.0 3.1 3.0 1.32 Y N 3.8 4.0

Integrity check of dependencies through cryptographic
hashes [9], [36], [83], [109], [131], [135], [138]

3.3 3.0 2.5 2.0 1.32 Y N 2.3 2.0

Maintain detailed SBOM [5], [8], [53], [183], [184] and
perform SCA [8], [31], [43], [48], [51], [53], [55], [56]

4.2 5.0 3.4 4.0 1.24 Y N 2.9 3.0

Ephemeral build environment [9], [123] 3.6 3.0 2.9 3.0 1.24 Y N 2.8 2.5

Prevent script execution 3.7 3.0 3.0 3.0 1.23 Y N 2.4 2.0

Pull/Merge request review [86] 4.6 5.0 3.8 4.0 1.21 Y N 3.6 4.0
Restrict access to system resources of code executed
during each build steps [42], [123], [185]

4.0 4.0 3.3 3.0 1.21 Y N 3.8 3.5

Code signing [47], [83], [109], [135], [138], [141], [155] 3.7 4.0 3.1 3.0 1.19 Y N 3.1 3.0

Integrate Open-Source vulnerability scanner into CI/CD
pipeline

3.8 4.0 3.3 3.0 1.15 Y N 3.1 3.0

Use of dedicated build service [9] 3.6 4.0 3.3 3.0 1.09 Y N 3.0 3.0
Preventive squatting the released packages 3.1 3.0 2.9 3.0 1.07 Y N 3.8 3.5
Audit, security assessment, vulnerability assessment, pen-
etration testing

4.3 4.0 4.1 4.0 1.05 Y N 3.8 3.5

Reproducible builds [121], [136], [186] 4.2 5.0 4.1 4.0 1.02 Y N 3.5 4.0
Isolation of build steps [123] 3.1 3.0 3.1 3.0 1.00 Y N 3.2 3.0
Scoped packages [178], [180] 2.9 3.0 2.9 3.0 1.00 Y N 2.8 2.0

Establish internal repository mirrors and reference one
private feed, not multiple [178]

3.6 3.0 3.7 4.0 0.97 Y N 2.7 3.0

Application Security Testing [34], [39], [41], [46], [55],
[56], [58], [66], [80], [122], [134], [187]

4.1 4.0 4.3 5.0 0.95 Y N 3.7 3.0

Establish vetting process for Open-Source components
hosted in internal/public repositories [15], [16], [32],
[134], [188]

4.1 4.0 4.3 5.0 0.95 Y N 3.8 3.5

Code isolation and sandboxing [42], [57], [185] 3.9 4.0 4.2 4.0 0.93 Y N 3.2 3.0

Runtime Application Self-Protection 3.7 4.0 4.2 4.0 0.88 Y N 3.8 4.0

Manual source code review [66] 4.1 4.0 4.8 5.0 0.85 Y N 4.4 5.0

Build dependencies from sources 3.0 3.0 4.1 4.0 0.73 Y N 3.8 4.0

TABLE I: Assessment of safeguards by 17 domain experts (left) and 134 developers (right). Utility and cost assessments were
given on a Likert scale, the numbers are shown with bar plots, from 1 (low) to 5 (high). The background of mean and median
values are determined by the intervals [1, 2.5] , (2.5, 3.5] and (3.5, 5.0] . Safeguards are shown in the order of the mean of
their Utility-to-Cost Ratio (U/C) (descending). Developer feedback on safeguard use was collected with yes/no questions, the
number of respective answers are shown using a bar plot.
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compiled languages, like Java or C/C++. In such cases, exe-
cution is achieved either at runtime, e.g., by embedding the
payload in a specific function or initializer, or by poisoning
test routines [19].

Differences also exist in regards to code obfuscation and
malware detection. In case of interpreted languages, down-
loaded packages contain the malware’s source code, which
makes it more accessible to analysts compared to compiled
languages. The presence of encoded or encrypted code in such
packages proofed being a good indicator of compromise [58],
as there are few legimitate use-cases for open-source packages.
Minification is one of them, however, matters primarily for
frontend JavaScript libraries. Indeed, many existing attacks did
not employ obfuscation or encryption [19] techniques. Still,
the quantity of open-source packages and versions makes man-
ual inspection very difficult, even if source code is accessible.

When it comes to compiled code, well-known techniques
like packing, dead-code insertion or subroutine reorder-
ing [189] make reverse engineering and analysis more com-
plex. It is also noteworthy that ecosystems for interpreted
languages ship compiled code. For instance, many Python
libraries for ML/AI use-cases include and wrap platform-
specific C/C++ binaries.

For what concerns safeguards, several of them are spe-
cific to selected package managers, namely Scoped packages
(Node.js) and Prevent script execution (Python and Node.js).
All others are relevant no matter the ecosystem, however,
control implementations and technology choices differ, e.g., in
case of Application Security Testing. Duan et al. [15] present
a comparative framework for security features of package
repositories (exemplified with PyPI, npm and RubyGems).

2) Benefits of the Taxonomy for Future Research and Open
Challenges: Our work systematizes knowledge about OSS
supply chain security by abstracting, contextualizing and clas-
sifying existing works. The proposed taxonomy can benefit
future research by offering a central point of reference and a
common terminology. The comprehensive list of attack vectors
and safeguards can support assessing the security level of
open-source projects, e.g., to conduct comparative empiric
studies across projects and ecosystems and over time.

An open challenge in OSS supply chain attacks is the
detection of malicious code. The availability of source code
in ecosystems for interpreted languages suggests that malware
analysis is more straight-forward. Still, recent publications
focus on those ecosystems, esp. JavaScript and Python [15],
[16], [57], [58], [74], partly due to their popularity, but also
because existing malware analysis techniques cannot be easily
applied. More subtle attacks, such as intentional insertion
of vulnerabilities, complicate detection since they require
analysis of the context of the change to distinguish it from an
accidentally introduced vulnerability [80]. Additionally, code
generation and the difficulty in identifying VCS commits that
correspond to pre-built components, as highlighted in [132],
[133], make malware analyis of source code difficult. The
safeguard Reproducible builds [121], [136], [186] addresses
this problem, however, it is not commonly applied, consid-
ered costly (cf. Table I) and more complex projects require
significant implementation efforts.

VII. USER SURVEY DEMOGRAPHICS

This section provides demographic information about the
respondents of the two online surveys. In summary, the re-
spondents to the expert survey meet the requirement of being
experts in the domain and participate actively in OSS projects.
The respondents to the developer survey regularly consume
OSS and have little knowledge of supply chain security.

Domain Experts: 17 respondents participated in the online
survey designed for experts in the domain of software supply
chain security. According to the self-assessment of their skills,
12 respondents consider themselves knowledgeable in the
domain of supply chain security, but also in software security
(14) and development (12). Considering their acquaintance
with 11 popular languages [190], the respondents cover 9 out
of them, whereby Python, Java and JavaScript are covered
best, while nobody had a background in .NET and Objective-
C. 14 out of the 17 respondents are active participants in OSS
projects, and were asked about their respective role (multiple
choice): all 14 are contributors, 7 are project maintainers, and
3 exercise other roles. 9 experts work in the private sector,
compared to 5 working in the public sector (e.g., government,
academia) and 3 in the not-for-profit sector. They cover the
industry sectors information industry (8), computer industry
(2), telecommunications (2), entertainment industry (1), mass
media (1), defense (1) and others (2).

Developers: 134 respondents participated in the online
survey designed for software developers, who were assumed
to exercise the role of downstream consumers in OSS supply
chains. This assumption was confirmed given that 121 (90%)
responded to using open-source components in their daily job.
Moreover, 37 (28%) actively participate in OSS projects: 31
as contributors and 22 as maintainers (multiple choice). 74
are also maintainers of code repositories, and 21 administer
package repositories. The self-assessment of their skills shows
that they are knowledgeable in software development (113),
and less so in supply chain security (22) and software security
(44). They cover all of the 11 programming languages (multi-
ple choice), whereby Java, JavaScript and Python are the most
popular ones. The majority of the respondents (120) work in
the private sector. In terms of industry sectors, computer and
information industry (55 and 54) outweigh other sectors.

VIII. RELATED WORKS

In the following, we distinguish existing works related to
specific aspects of OSS supply chains, e.g., technologies,
systems, or stakeholder interactions, from more general ones
covering the entire supply chain.

Specific Works. Giovanini et al. [167] leverage patterns
in team dynamics to predict the susceptibility of OSS de-
velopment teams to social engineering attacks. Gonzalez et
al. [80] describe attacks aiming to inject malicious code
in VCSs via commits. They propose a rule-based anomaly
detector that uses commit logs and repository metadata to
detect potentially malicious commits. In the same direction,
Goyal et al. [191] analyze collaborative OSS development and
highlight the problem of overwhelming information that po-
tentially results in maintainers accepting malicious merge re-
quests. Wheeler [192] describes the problem of code injection
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into software by subverted compilers, and proposes Diverse
Double-Compiling (DDC) to detect such attack. Within this
context, Lamb et al. [186] propose an approach to determine
the correspondence between binaries and the related source
code through bit-for-bit checks of build processes, while Ly et
al. [132] analyzed the discrepancies between Python code in a
projects’ VCS and its distributed artifacts. Gruhn et al. [123]
analyze the security of CI systems, and identify web User
Interface (UI)s and build processes as the main sources of ma-
licious data. They propose a secure build server architecture,
based on the isolation of build processes through virtualization.
Multiple works address common threats to package managers
of different ecosystems. Cappos et al. [14], [154] identify
possible attack vectors related to a lack of proper signature
management at the level of packages and their metadata,
some of which we considered below Distribute malicious
version of legitimate package. Zimmerman et al. [16] analyze
security threats and associated risks in the npm ecosystem,
and define several metrics describing the downstream reach
of packages and maintainers, which allows identifying critical
elements. Inversely, they also measure the number of implicitly
trusted upstream packages and maintainers. Bagmar et al. [74]
performed similar work for the PyPI ecosystem, and several
of their vectors are subsumed below Create name confusion
with legit. package. Duan et al. [15] propose a framework to
qualitatively assess functional and security aspects of package
managers for interpreted languages (i.e., Python, JavaScript,
and Ruby). They provide an overview of stakeholders (and
their relationships) in those package manager ecosystems, but
do not specifically cover VCS and build systems. Also Kaplan
et al. [66] present the state of the art of threats in package
repositories and describe – also experimental – countermea-
sures from the scientific literature.

General works. Ohm et al. [19] manually inspect malicious
npm, PyPi, and Ruby packages. They propose an attack tree
– based on a graph of Pfretzschner et al. [46] – describing
how to inject malicious code into dependency trees. The
attack tree proposed in Section IV follows a more rigorous
structure (degrees of interference with existing packages,
supply chain stages, stakeholders and systems involved) and
our SLR resulted in the addition of 89 attack vectors. Our
results have been validated through two user surveys. Du et
al. [184] describe a wide range of high-level software supply
chain risks, both external (e.g., natural disaster, political factor)
and internal ones (e.g., participants, software components).
ENISA [193] proposes a taxonomy of supply chain attacks
describing the techniques used by attackers and the targeted
assets, both from the supplier and customer perspective. How-
ever, they only mention few high-level techniques. Torres-
Arias et al. [83] propose in-toto, a framework based on the
concepts of delegations and roles to cryptographically ensure
the integrity of software supply chains through an end-to-end
verification of each step and actors involved. Samuel et al.
[155] propose The Update Framework (TUF) to overcome in-
toto’s main limitations regarding secure distribution, revoca-
tion and replacement of keys.

IX. THREATS TO VALIDITY

The taxonomy was modeled using the semantics of attack
trees and several of its nodes reflect the characterizing stages
of OSS supply chains, with code from project contributors
and maintainers flowing to downstream consumers. Though
its comprehensiveness, comprehensibility, and usefulness have
been positively assessed by the survey participants, the taxon-
omy reflects the current state of the art. As the supply chain
technologies evolve, it is expected that the proposed attack
tree will evolve too.

We systematically reviewed the literature and continuously
monitor aggregators of security news to create a comprehen-
sive list of attack vectors, and collected feedback from domain
experts to assess its completeness. Still, the complexity of OSS
supply chains makes it very likely that new attack vectors and
techniques will be discovered. The quality of the taxonomy
will correspond to the degree of changes required to reflect
such new attacks.

The feedback collected from survey participants could have
been biased if we only considered experts that we directly
know. Instead, thanks to the snowball sampling we have
reached also people outside of our network. Considering
authors of relevant scientific works, experts from academia and
industry, all working in the specific area of software supply-
chain security, allowed us to reach the intended audience
(cf. Section VII): the 17 respondents of the expert survey
were knowledgeable in supply chain security and actively
participate in OSS projects, the 134 participants of the de-
veloper survey have knowledge in software development and
use OSS regularly, and both groups cover a diverse range of
prg. languages, incl. those subject to frequent attacks.

X. CONCLUSION

As validated by domain experts, the proposed taxonomy
of attacks on OSS supply chains is comprehensive, compre-
hensible, and serves different use-cases. It can benefit future
research serving as a central reference point and setting a
common terminology.

The listing of safeguards and their mapping to attack tree
nodes helps to determine the exposure of given stakeholders to
supply chain attacks. Their assessment in terms of utility and
costs can serve to optimize the spending of limited security
budgets. Future empiric studies may investigate the prevalence
of the identified countermeasures, e.g. their use by given open-
source projects. On our side, we aim at developing techniques
for the detection of malicious code in compiled Java open-
source components. Going forward, to raise awareness for
threats to OSS supply chains, we will publish the interactive
visualization of the taxonomy online. References to literature
and real-world incidents will be kept up-to-date by using the
open-source approach to help the taxonomy itself stay relevant.
Finally, we would also like to put the taxonomy into practice
for other use-cases, esp. risk assessment.
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APPENDIX A
SAFEGUARDS AGAINST OSS SUPPLY CHAIN ATTACKS

Table II shows the identified safeguards mitigating attacks
on OSS Supply Chain.

APPENDIX B
SCIENTIFIC AND GREY LITERATURE RESOURCES

The four digital libraries queried during the SLR are:
Google Scholar6, arXiv7, IEEExplore8 and ACM Digital Li-
brary9. The main sources used during the grey literature review
are the following:

• IQT Lab’s Software Supply Chain Compromises
dataset 10;

6https://scholar.google.com/
7https://arxiv.org/
8https://ieeexplore.ieee.org/
9https://dl.acm.org/
10https://github.com/IQTLabs/software-supply-chain-compromises
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Control Type Stakeholders Involved
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Attack-Vector Addressed

Maintain detailed SBOM and perform SCA X X • • • AV-000
Code signing X • • • AV-200, AV-500
Use of security, quality and health metrics X X • • • AV-000
Reproducible builds X • • • AV-400, AV-500
Secure authentication (e.g., MFA, password re-
cycle, session timeout, token protection)

X • • AV-*00 → AV-602

User account management X X • • AV-302,AV-402,AV-504,AV-600
Audit X X • • AV-000
Security assessment X • • AV-000
Vulnerability assessment X • • AV-000
Penetration testing X • • AV-000
Scoped packages X • • AV-509
Preventive squatting the released packages X • • AV-200
Pull/Merge request review X • AV-301, AV-302
Protect production branch X X • AV-301, AV-302
Isolation of build steps X • AV-400
Ephemeral build environment X • AV-400
Use minimal set of trusted build dependencies
in the release job

X • AV-400

Restrict access to system resources of code
executed during each build steps

X • AV-400

Use of dedicated build service X • AV-400 → AV-700
Manual source code review X • • AV-300
Application Security Testing X • • AV-000
Build dependencies from sources X • • AV-400, AV-500
Typo guard/Typo detection X X • • AV-200
Establish vetting process for Open-Source com-
ponents hosted in internal/public repositories

X • • AV-000

Runtime Application Self-Protection (RASP) X X • AV-000
Remove un-used dependencies X • AV-001
Prevent script execution X • AV-000
Code isolation and sandboxing X • AV-000
Version pinning X • AV-001
Dependency resolution rules X • AV-501, AV-508, AV-509
Establish internal repository mirrors and refer-
ence one private feed, not multiple

X • AV-501,AV-502, AV-504, AV-505

Integrate Open-Source vulnerability scanner
into CI/CD pipeline

X • AV-000

Integrity check of dependencies through cryp-
tographic hashes

X • AV-400, AV-500

TABLE II: Safeguards against OSS supply chain attacks, incl. control type, stakeholder(s) involved in their implementation,
and a mapping to mitigated attack vectors (cf. Figure 4 to resolve their identifiers).

• Backstabber’s Knife Dataset 11 [19];
• Whitepapers from Microsoft [178] and Google [194];
• Whitepapers of projects for securing the software supply

chain, like Supply-chain Levels for Software Artifacts
(SLSA) [9], sigstore 12, TUF 13, in-toto 14 and OSSF
Scorecard 15;

• News aggregator (e.g., The Hacker News 16, Bleeping-
computer 17, heise Security 18);

• Blogs of package repositories and security vendors (e.g.,

11https://dasfreak.github.io/Backstabbers-Knife-Collection/
12https://www.sigstore.dev/
13https://theupdateframework.io
14https://in-toto.io
15https://github.com/ossf/scorecard
16https://thehackernews.com
17https://www.bleepingcomputer.com
18hhttps://www.heise.de/security/

Snyk 19, Sonatype 20) and security researchers;
• Keynotes from cyber-security conferences (e.g., Black-

hat [147]);
• MITRE’s Common Attack Pattern Enumeration and Clas-

sification (CAPEC)21;
• MITRE’s ATT&CK22.

19https://snyk.io/blog/
20https://blog.sonatype.com
21https://capec.mitre.org/
22https://attack.mitre.org

https://dasfreak.github.io/Backstabbers-Knife-Collection/
https://www.sigstore.dev/
https://theupdateframework.io
https://in-toto.io
https://github.com/ossf/scorecard
https://thehackernews.com
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