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Abstract—Secure multi-party computation (MPC) allows
a group of mutually distrustful parties to compute a joint
function on their inputs without revealing any informa-
tion beyond the result of the computation. This type of
computation is extremely powerful and has wide-ranging
applications in academia, industry, and government. Pro-
tocols for secure computation have existed for decades, but
only recently have general-purpose compilers for executing
MPC on arbitrary functions been developed. These projects
rapidly improved the state of the art, and began to make
MPC accessible to non-expert users. However, the field is
changing so rapidly that it is difficult even for experts to
keep track of the varied capabilities of modern frameworks.

In this work, we survey general-purpose compilers
for secure multi-party computation. These tools provide
high-level abstractions to describe arbitrary functions
and execute secure computation protocols. We consider
eleven systems: EMP-toolkit, Obliv-C, ObliVM, TinyGar-
ble, SCALE-MAMBA (formerly SPDZ), Wysteria, Share-
mind, PICCO, ABY, Frigate and CBMC-GC. We evaluate
these systems on a range of criteria, including language ex-
pressibility, capabilities of the cryptographic back-end, and
accessibility to developers. We advocate for improved doc-
umentation of MPC frameworks, standardization within
the community, and make recommendations for future
directions in compiler development. Installing and running
these systems can be challenging, and for each system,
we also provide a complete virtual environment (Docker
container) with all the necessary dependencies to run the
compiler and our example programs.

I. INTRODUCTION

Secure multi-party computation (MPC) provides a

mechanism by which a group of data-owners can com-

pute joint functions of their private data, where the

execution of the protocol reveals nothing more about

the underlying data than what is revealed by the output

alone. MPC can be viewed as a cryptographic method

for providing the functionality of a trusted party—who

would accept private inputs, compute a function and

return the result to the stakeholders—without the need

for mutual trust.

Thanks to these strong security guarantees, MPC has

broad potential for practical applications, ranging from

general computations of secure statistical analysis [22],

[23], [25], [52], [53], [54], [55], [96], to more domain-

specific uses like financial oversight [2], [21], [26], [58],

biomedical computations [35], [32], [75], [84], [82],

[85], [132] and satellite collision detection [73], [74],

[86].

Despite the demand for MPC technology, practical

adoption has been limited, partly due to the efficiency
of the underlying protocols. General-purpose MPC pro-

tocols, capable of securely computing any function, have

been known to the cryptographic community for 30 years

[31], [68], [127], [128]. Until recently such protocols

were mainly of theoretical interest, and were considered

too inefficient (from the standpoint of computation and

communication complexity) to be useful in practice.

To address efficiency concerns, cryptographers have

developed highly-optimized, special-purpose MPC pro-

tocols for a variety of use-cases. Unfortunately, this

mode of operation does not foster widespread deploy-

ment or adoption of MPC in the real world. Even if

these custom-tailored MPC protocols are theoretically

efficient enough for practical use, designing, analyzing

and implementing a custom-tailored protocol from the

ground up for each application is not a scalable solution.

General-purpose MPC compilers, could drastically

reduce the burden of designing multiple custom proto-

cols and could allow non-experts to quickly prototype

and deploy secure computations. Using compilers, the

engineering effort devoted to making general-purpose

MPC protocols practical and secure can be amortized

across all of the uses of such a system.

Many significant challenges arise when designing and

building an MPC compiler. In general, implementing

any type of multi-round, distributed protocol robustly

and efficiently is a major engineering challenge, but

the MPC compilers have additional requirements that

make them especially challenging to build correctly.

For efficiency, both the compiler and the cryptographic

back-end need to be highly optimized. For usability, the

front-end compiler needs to be expressive, flexible, and

intuitive for non-experts, and should abstract away many

of the complexities of the underlying MPC protocol,

including circuit-level optimizations (e.g. implementing

floating-point operations as a Boolean circuit) and back-

end protocol choice (e.g. selecting an optimal protocol

for a particular computation). With today’s compilers,

optimizing performance often still requires a fair degree



of knowledge and effort on the part of the user.

Fairplay [99] was the first publicly available MPC

compiler. It translated code written in a high-level Secure

Function Definition Language (SFDL) into a garbled

circuit representation, which could then be (securely)

evaluated by two parties. Fairplay was subsequently

extended to allow for true multi-party computation in

FairplayMP [14], using a modified version of the BMR

protocol [9]. It was followed shortly by VIFF [63],

[47] and SEPIA [28], which used the same basic ar-

chitecture: they took programs written in fairly high-

level languages, converted them to a circuit format, and

executed the circuit using a secure computation protocol.

These early compilers showed that general-purpose

MPC was achievable, and, although their performance

rendered them unsuitable for most real-world applica-

tions, they launched what is now a very active field of

research in MPC compiler design and implementation.

Thanks to these efforts, dramatic improvements in

secure computation algorithms coupled with a steady

increase in hardware performance have made MPC a

viable solution to a large class of real-world problems.

Modern MPC protocol implementations are fast enough

to securely evaluate complex functions on moderately-

large data sets, such as the numerous implementations

of secure regression analyses with tens to hundreds

of thousands of observations, and tens to hundreds of

variables [23], [38], [62], [87], [104].

The rush of activity in this field can be difficult

to navigate: dozens of new compilers and supporting

frameworks encompass a wide variety of architectures

and features which influence their efficiency, usability

and suitability for different tasks. The goal of this

Systematization of Knowledge paper is to provide a

guide to the powerful new breed of MPC compilers, and

is primarily aimed at four distinct types of readers.

1) Developers looking to choose a compiler with

which to implement a specific secure computation

2) Theoretical cryptographers looking to understand

state-of-the-art in practical, secure computation

3) Compiler designers looking to understand the lim-

itations of existing technology and identify new

research directions

4) Managers and policy-makers looking to under-

stand whether existing technology is mature

enough for their needs

This paper briefly reviews necessary technical back-

ground about secure multi-party computation, then sur-

veys the state-of-the-art MPC frameworks, evaluating

them based on their general architecture, underlying

technology, threat models, and expressiveness. Our com-

parison focuses on usability features rather than perfor-

mance metrics, and we report on our experience with

implementing three small test programs in each case.

Casual readers may wish to skim Section VI, which

discusses each framework in greater depth, and focus on

the final discussion section, where we advocate for im-

proved documentation and standardization and suggest

future directions in compiler research.

Many of these frameworks are themselves research

projects or works-in-progress: they have non-trivial build

dependencies and complicated work flows. Indeed, im-

plementing our simple example programs in each sys-

tem required significant engineering effort: we estimate

over 750 person-hours. To allow others to experiment

more easily with these systems, we have created an

on-line Github repository1 with two artifacts: (1) a

set of Docker containers, each of which provides a

development environment configured with the required

software infrastructure for each MPC framework, along

with executable examples of our test cases, and (2) a wiki

page that collects much of the evaluation presented here

with additional documentation about each framework.

a) Related Work: Archer et al.’s survey [6] of se-

cure computation tools across several paradigms, includ-

ing garbled circuit schemes, defines a maturity taxonomy

that aims to describe the practical readiness of several

schemes. Shan et al.’s survey [117] outlines different

threat models and computation techniques for securely

outsourcing many specific types of computation. The

authors of Frigate [101] include a short survey of existing

MPC frameworks, which focuses on correctness and

covers a slightly older body of work. The SSC protocol

comparison tool [105], [106], [107] allows users to find

published protocols matching certain security or pri-

vacy criteria, but this tool classifies theoretical protocols

rather than implementations and does not include proto-

cols developed in the past few years. The awesome-mpc

repository [115] provides an up-to-date list of compilers,

back-ends and special-purpose protocols, with a short

description of each. To the best of our knowledge, these

previous works did not actually install and experiment

with each of the systems they surveyed, but drew their

conclusions based on the descriptions of the systems

in their published papers and documentation. Unfortu-

nately, we have found that the features, functionality

and syntax of the actual implementations do not always

match those found in the documentation.

II. CRYPTOGRAPHIC BUILDING BLOCKS

In this section, we describe important cryptographic

primitives common to many MPC protocols.

A. Secret Sharing

Cryptographic secret sharing protocols [116], [20]

allow a dealer to break a secret value into shares and

distribute these shares to group of recipients with the

1https://github.com/MPC-SoK/frameworks
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Fig. 1: Oblivious Transfer

property that any unqualified set of recipients learns

nothing about the secret, while any qualified set of

recipients can reconstruct the secret from their shares.

In practice, most secret-sharing protocols are threshold
protocols, where any collection of fewer than t shares

reveals nothing about the secret – and any subset of

size at least t can reconstruct the secret. Many general

secret sharing schemes exist [17], [27], [19], [121], [42],

as well as constructions of secret-sharing schemes for

general (non-threshold) access structures [64], [76]. See

Beimel [11] for a survey of secret-sharing protocols.

In practice, most MPC protocols rely on a linear secret

sharing scheme: either simple, additive secret sharing or

Shamir sharing. Both satisfy linearity: the sum of two

secret shares is equal to the share of the sum.

B. Oblivious Transfer (OT)

Oblivious Transfer (OT) [110], [126], [57] is a cryp-

tographic protocol that allows a party to choose k of

n secrets from another party, without revealing which

secret they have chosen. Figure 1 shows
(
2
1

)
-OT, where

one secret is chosen from two options.

From a theoretical standpoint, MPC protocols can be

built from OT alone [91], [80], but the key feature that

makes OT suitable for building efficient MPC proto-

cols is that OT is equivalent to a seemingly weaker

functionality called Random OT (ROT) [43], where the

choice bit b is not provided as an input, but instead is

randomly generated by the protocol itself. The output of

a ROT protocol is two correlated pairs of bits (x0, x1)
and (b, xb), where x0, x1, b are uniformly distributed

in {0, 1}. Given a random OT correlation (the pairs

(x0, x1) and (b, xb)) Alice and Bob can compute the OT

functionality using only three bits of communication.

Since ROT implies OT, parties can compute all the

necessary ROTs needed for a protocol in advance, in

an input-independent pre-processing (“offline”) phase.

Then, in the “online” phase, they consume these pre-

generated OTs and execute the protocol with mini-

mal communication cost and no computationally expen-

sive public-key operations. This offline-online separation

makes the online phase of such a protocol extremely

efficient, but there is still the problem of making the pre-

processing phase efficient. There are two fundamentally

different approaches to handling the offline phase, either

through a trusted dealer or a cryptographic batched

correlation-generation protocol.

In the trusted dealer model, a semi-trusted dealer sim-

ply distributes correlated randomness to all the parties.

The trusted dealer has no inputs, and never handles any

secret information, thus the dealer need only be trusted to

generate and distribute random values to the appropriate

parties. In the presence of a trusted dealer, the offline

phase of many MPC protocols can be extremely efficient.

Even without a trusted dealer, OTs can be generated

efficiently through OT extension, where a small number

of “base” or “seed” OTs are converted into a mas-

sive number of ROTs [78] through the use of efficient

symmetric-key primitives (e.g. AES). Since its introduc-

tion, there have been many variants of OT-extension [80],

[72], [103], [94], [89] and OT-extension has become an

essential feature in almost all MPC implementations.

III. SECURE MULTI-PARTY COMPUTATION

Secure multi-party computation protocols (MPC) al-

low a group of mutually distrustful stakeholders to

securely compute any function of their joint inputs in

such a way that the execution of the protocol provably

reveals nothing beyond the result of the computation.

Security is often defined using a simulation paradigm,

where a protocol is said to be secure if there exists an

efficient (polynomial-time) simulator that takes as input

the output of the computation and produces a protocol

transcript (the “views” of each participant) such that any

view (or some subsets of views) is indistinguishable from

the transcript created by a real execution of the protocol.

This ensures that each participant (or certain colluding

subsets of participants) learn nothing from executing the

protocol that they could not have learned from the output

alone. In this way, MPC cryptographically emulates a

trusted party who accepts each participant’s private input,

computes the desired function and returns the result.

Early MPC protocols used a circuit model for se-

cure computation, first representing the target function

as either a Boolean or arithmetic circuit (over some

finite field), then securely evaluating the circuit gate-by-

gate. Many of the compilers we analyzed still use this

circuit model of computation. In the remainder of this

section, we sketch key design characteristics of the major

protocol families that underpin modern MPC systems.

A. Garbled Circuits

Circuit garbling is a method for secure two-party

computation, originally introduced by Yao [127], [128].

In this framework, there are two participants, a garbler
and an evaluator. The participants begin by expressing

the desired function as a Boolean circuit. The garbler

then proceeds to garble the circuit gate-by-gate using a

standard symmetric-key cryptosystem (usually AES), as



follows. For each wire in the circuit, the garbler selects

two uniformly random and independent “wire tokens.”

The garbler then expresses each gate in the circuit as a

truth table by encrypting each output wire token with

the two input wire tokens that generate it (for Boolean

circuits with fan-in two, each truth table will have four

rows). The garbler permutes the rows of the truth-table,

and sends the entire collection of “garbled” gates to the

evaluator. The garbling procedure is designed so that

learning one wire token for each input wire of a gate

allows you to decrypt exactly one row of its garbled

truth-table, revealing a single wire token belonging to the

output-wire of that gate. Thus an evaluator that learns a

single wire token for each input wire of the circuit can

iteratively produce the wire token for each wire in the

circuit, and completely evaluate the circuit.

To provide its secret inputs, the garbler sends the

correct wire tokens directly to the evaluator. For each bit

of the evaluator’s inputs, the garbler and evaluator en-

gage in an oblivious transfer where the evaluator secretly

selects one of two wire tokens offered by the garbler.

Once the evaluator has a wire token for each input bit,

it can evaluate the circuit (performing symmetric-key

decryptions for every gate) and learn the result. In the

semi-honest model, the evaluator forwards the result of

the computation to the garbler. For a formal description

of the garbling procedure, see Bellare et al. [13].

The initial garbled circuit protocol provided security

against semi-honest adversaries [95], but there exist

many different improvements and implementations that

provide security against fully malicious adversaries.

Two key performance improvements are the “free

XOR trick” [93], which evaluates XOR gates in a single

round without any cryptographic operations required by

the garbled tables; and Half-Gates [130], which reduce

the number of ciphertexts required to garble AND gates.

The addition of the AES-NI instruction set made com-

puting AES encryptions on modern processors extremely

efficient, and has dramatically reduced the computation

cost of garbled-circuit-based protocols.

Garbled circuits are so useful and ubiquitous in cryp-

tography that it has been argued that circuit garbling

should be considered as a fundamental cryptographic

primitive (like encryption or signatures) rather than as

a protocol for two-party secure computation [13].

Key Features: Circuit garbling is inherently a two-

party protocol, and requires only a constant number of

rounds of communication (independent of the circuit

depth). The number of (expensive) public-key operations

depends only on the input size (OT is a public-key prim-

itive) and the number of private key operations depends

on the number of gates. The total communication cost

is proportional to the size of the circuit. Since garbled

circuit protocols represent each gate by its truth table, the

circuit size grows quadratically with the field size when

garbling arithmetic circuits. Thus almost all garbled

circuits protocols operate on Boolean circuits. There are

different methods for garbling arithmetic circuits over

large fields [4], but these have never been implemented.

B. Multi-party circuit-based protocols

The GMW [68], BGW [16] and CCD [31] protocols

allow an arbitrary number of parties to securely compute

a function represented as a circuit. In these protocols,

each party uses a linear secret sharing scheme to share

its input, and the parties engage in a protocol to compute

the answer gate-by-gate. Each gate computation securely

transforms secret-shares of the gate’s inputs to secret-

shares of the gate’s outputs. For each addition gate in

the circuit, participants can locally compute shares of the

output using the linearity of the secret-sharing scheme.

Evaluating multiplication gates requires communication,

and the schemes differ in how they handle multiplication.

The GMW protocol can evaluate either Boolean or

arithmetic circuits, and multiplication gates are executed

using Oblivious Transfer for Boolean circuits and with

Oblivious Polynomial Evaluation [102] or Oblivious

Linear Evaluation [51] for arithmetic circuits. See Ishai

et al. [81] for a summary of methods for securely

computing multiplication gates.

Oblivious communications for multiplication gates

dominate the cost of circuit evaluation. All practical

GMW-based implementations have taken steps to reduce

their overhead. Whether evaluating arithmetic or Boolean

circuits, the approach is the same: in an offline pre-

computation phase, the participants generate correlated

randomness (or receive it from a trusted dealer), and in

the online phase, they use these random correlations as

masks, or one-time-pads, to compute shares of the output

of a multiplication gate based on the shares of the inputs.

Boolean-circuit GMW-based protocols use OT-

extension [78] to pre-compute ROT correlations, which

are then consumed in the online phase of the protocol.

Arithmetic-circuit GMW-based protocols usually gener-

ate some form of “Beaver Multiplication Triples” (secret

shares of random triples (a, b, a · b), where a, b are field

elements) [10] that are used as masks in the online phase.

Information-theoretic protocols, like BGW [16] and

CCD [31] rely on secret-sharing schemes supporting

strong multiplication [40], [33], [29], [41] rather than

on public-key primitives. These protocols can be faster,

since they do not require computationally expensive

public-key operations, but require an honest majority

of participants. They generally do not benefit from

including a pre-computation phase of the protocol.

Key Features: Multi-party circuit-based protocols can

support an arbitrary number of participants. The number

of rounds of communication is proportional to the mul-



tiplicative depth of the circuit, and the total amount of

communication depends on the number of multiplication

gates in the circuit. These protocols allow independent

computation parties to receive input and pass output to

other parties without compromising security.

C. Hybrid models

Recent systems have moved away from a strict cir-

cuit representation and instead use a hybrid model,

where optimized subprotocols for common operations

are stitched together (possibly using traditional circuit-

based operations). These hybrid systems often represent

intermediate values as secret shares over a large finite

field. They may use a mix of information-theoretic and

cryptographic protocols, and as such, the number of

computation parties and threat models vary.

Hybrid models allow for very different performance

characteristics than strict circuit-based models. For ex-

ample, in a finite field, operations like comparisons, bit-

shifts, and equality tests are expensive to represent as

an arithmetic circuit. However, specialized sub-protocols

that operate on secret shares (e.g., [44], [45], [39]) can

compute a sharing of the result far more efficiently.

D. Alternative methods

Fully homomorphic encryption [66] provides an al-

ternative method for securely computing functions en-

coded as arithmetic circuits. There are several libraries

implementing fully homomorphic encryption including

HELib [71], PALISADE [114] and SEAL [113]. We do

not include these in our comparisons. There are also

efforts to garble RAM-model programs [98], [67], [61],

instead of circuits, but these have not been implemented.

IV. FRAMEWORKS SURVEY

We survey eleven general-purpose MPC compiler

frameworks, all of which follow the same general ap-

proach: first, a compiler converts a program written in a

specialized, high-level language to an intermediate rep-

resentation (often a circuit). Then the circuit is passed as

input to a runtime, which executes an MPC protocol and

produces an output. We survey two compilers (Frigate

and CBMC-GC) that do not have a runtime component.

Table I gives basic information about these frame-

works, including protocol type, security settings, avail-

ability, and some usability features such as documenta-

tion. We limit our scope to recent work: each framework

has had a major update since 2014. We do not consider

frameworks that are primarily protocol implementations:

all the projects included have a developed front-end. We

also do not consider standard libraries and APIs related

to secure computation. In many cases, we only consider

the latest work by a research group.

These frameworks are typically introduced in an aca-

demic, peer-reviewed Paper. Although many develop a

custom or optimized protocol, we group them broadly

into Protocol Families as described in Section III: Gar-

bled Circuits (GC), Multi-party Circuit protocols (MC),

and Hybrid models (Hy). We also note the number of

computation Parties Supported in a protocol evaluation.

We identify two main threat models: Semi-honest
adversaries execute the protocol correctly but attempt to

glean additional information from the data they receive.

A Malicious adversary may break the protocol arbi-

trarily in order to learn information about other inputs

or to cause the protocol to output an incorrect result.

In practice, security against a malicious adversary is

implemented as a “malicious-with-abort” scheme, where

the protocol aborts if malicious activity is detected; a

malicious adversary cannot cause an incorrect answer,

but may result in no answer at all. These descriptors do

not apply to frameworks that do not execute a secure

computation. We note whether the framework allows

Mixed-Mode computation: a way to execute both secure

and insecure operations in a single program.

In all tables, partial support is indicated by a �� symbol;

these limitations are explained in detail later in the text.

A. Engineering challenges

Many protocols use a circuit-based model to represent

the function being computed. This has the advantage that

circuit-based computations are input independent and

thus the run-time of the protocol leaks nothing about the

user inputs. However, using a circuit model introduces

serious challenges and limitations that are present to

some degree in all of the frameworks we tested.

Arithmetic circuits operate over a finite field whose

size must be set in advance, and must be large enough to

prevent overflow (which will vary by application). Arith-

metic circuits do not natively support non-arithmetic

operations like comparisons and equality checks.

Boolean circuits need to redefine basic operations for

every bit width: supporting arithmetic on n-bit integers

in such a protocol requires implementing n-bit addition

and multiplication circuits. We found no standardization

in this area, and most Boolean circuit compilers design

and implement their own arithmetic operations. This

leads to many restrictions on acceptable programs, and

most Boolean-circuit-based frameworks do not support

arbitrary bit-width operations.

Compiling high-level programs into circuits requires

unrolling all loops and recursive calls. For privacy, the

number of loop iterations and recursion depth cannot

depend on private inputs. In some situations, static anal-

ysis techniques can infer loop termination conditions, but

most compilers do not support such analysis, and instead

force the programmer to manually define loop bounds at

compile time. Few compilers support recursion.
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EMP-toolkit [122] GC 2 � � � � � � � � 09/2018
Obliv-C [129] GC 2 � � � � � � �� � 06/2018
ObliVM [97] GC 2 � � � � � � � � 02/2016
TinyGarble [118] GC 2 � � � � � �� � �� 10/2018
Wysteria [111] MC 2+ � � � �� � � �� � 10/2014
ABY [48] GC,MC 2 � � � � � � � � 10/2018
SCALE-MAMBA - Hy 2+ � � � � � � �� � 10/2018
Sharemind [24] Hy 3 � � � � � � � �� 09/2018
PICCO [134] Hy 3+ � � � � � �� � � 10/2017
Frigate [101] - 2+ � - - � � � � � 05/2016
CBMC-GC [77] - 2+ � - - �� � � � � 05/2017

TABLE I: A summary of defining features and documentation types. Partial support (��) is explained in Section V-A.

Conditional operations on secret data can reveal which

branch was chosen if the branches take different amounts

of computation, so they are typically implemented as a

multiplexer, where both branches are evaluated. Simi-

larly, a simple array lookup on a private index must be

expanded into a linear-size multiplexer circuit. Frigate,

CBMC-GC, and PICCO implement private indexing

in this way. Oblivious RAM [69] provides a method

for making RAM access patterns data independent, but

few frameworks have ORAM support, either natively

(ObliVM and SCALE-MAMBA) or via a library (Obliv-

C). Most languages do not even allow private array

indexing syntactically: if i is a “secret” integer and v is

a “secret” array, then v[i] is not valid syntax.

Balancing transparency and flexibility is a key chal-

lenge for the MPC compiler designer. MPC protocols

often have very different performance characteristics

than the corresponding insecure computation, and a

compiler that completely hides these differences from

the end-user (e.g. automatic multiplexing) in order to

provide a more versatile, expressive high-level language

can lead developers to write code that is not “MPC-

friendly.” Alternately, a framework that provides direct

access to different back-end representations assumes

a high degree of cryptographic expertise on the part

of end-users but allows expert users to write highly

optimized MPC protocols. It is possible to provide both

expressiveness and protocol efficiency without requiring

a high degree of cryptographic knowledge on the part

of the developer by automatically selecting the optimal

MPC protocol for different parts of the code. This type

of automatic optimization is difficult, however, and the

MPC compilers we analyzed do not attempt it. The EzPC

project [30] and ABY3 project [100], both based on ABY

(Section VI-F), attempt to automatically optimize the

back-end representation among three protocols. At the

time of this writing, however, neither project had code

available and we have not included them in our tests.

V. EVALUATION CRITERIA

A. Usability

We consider the tools and documentation a developer

needs to install, run, and write programs using the

framework. Our findings are summarized in Table I.

We identify several types of valuable documentation.

Thankfully, every framework we tested includes some

form of basic installation documentation. Language
Documentation gives an overview of the high-level lan-

guage: a language architecture and design document, a

start-up guide or tutorial, or a generated list of types

and built-in functions. Some larger systems also have

Online Support, such as an active mailing list or paid

personnel who provide technical support2. Functional

Example Code demonstrates end-to-end execution of a

program within a framework and is often more up-to-

date than general language documentation (a �� indicates

we needed additional files or tools to run examples).

Explicit Example Documentation provides context for

these programs, either in the comments of the code or a

separate document (a �� indicates limited documentation;

details in Section VI).

Most of the frameworks are Open Source under a

standard GNU or BSD license (a �� indicates closed-

source tools or code are required for full functionality).

We record the date of the Last Major Update (as of this

writing): either ongoing development or the latest tagged

release.

B. Sample Programs

We implemented three sample programs to evaluate

usability, expressiveness, architecture, and cryptographic

design of the frameworks. In addition to our online

repository, we include illustrative code samples in the

Appendix A.

2 Although we received support from academic authors, we do not
count responsive authors as “online support;” this model is not scalable.
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EMP-toolkit � � � � � � � � � � � � � � � � �

Obliv-C � � � � � � � � � � � � � � � � Lib
ObliVM � � � � �� � �� � � � � � � � � � ORAM
TinyGarble - - - - - - - - - - - - - - - - -
Wysteria � � � � �� - � � � � � �� � � � � �

ABY �� � � �� � � � � � � � � � � � �� �

SCALE-MAMBA � � �� � � � �� � � � � � � � � � ORAM
Sharemind � � � � � � � � � � � � � � � � �

PICCO �� � � � � � � � � � � � � � � � Mux
Frigate � � � � � � � � � � � � � � � � Mux
CBMC-GC � � � �� � � � � � � � � � � � � Mux

TABLE II: A summary of functionality and expressibility of each high-level language. Partial support (��) is explained

for individual frameworks in Section VI.

1) Multiply Three: This program takes integer input

from three parties and computes the product. The simple

function demonstrates the structure of each framework.

The program tests whether the implementation supports

three or more parties, or if there is a simple way to secret-

share multiple inputs across the two computation servers.

It also tests basic numeric capabilities of the framework:

input and output of integers and simple computation on

secure types.

2) Inner Product: The inner product takes the sum

of the pairwise product of the elements of two vectors.

It tests array-related functionality. Parties should be able

to pass an array as input, store secret data within, and

access and iterate over the contents. Some frameworks

provide ways to parallelize operations over arrays, either

through explicit syntactic support or through a parallel

architecture device like SIMD gates.

3) Crosstabulation: The crosstabulation program cal-

culates averages by category, where the category table

and value table share a primary key but are owned by

different parties. This tests framework expressiveness,

including input, output, and modification of arrays and

conditionals on secret data. In some cases, we tested

whether user-defined data types (structs) are supported.

We used a simple, brute-force algorithm, and typically

returned a list of sums by category (rather than averages).

C. Functionality

We assess the expressive ability of the high-level

language used to define secure functions. These criteria

are summarized in Table II.

1) Data Types: A fully-supported data type must

have both public and secret forms, and the language

should allow input and output of the type. These include

Booleans, signed or unsigned Fixed-length Integers, and

more complicated numerical types, such as Arbitrary-

length Integers and Floating- or fixed-point numbers.

Although libraries for these types can be built using

fixed-length integer types, we only mark them supported

if they are available by default. Combination types

include Arrays and Dynamic Arrays, where the latter

has a size not known at compile time, as well as Structs,

user-defined types that can hold other data types as sub-

fields. These complex types are marked supported if they

can contain secure data.

2) Operators: Supported operators can be applied

to secret data types to get a secret result. We con-

sider Logical operators on Booleans and Comparisons
(equality and inequalities) between integers. We group

Addition and subtraction as one category, and Multipli-
cation and Division separately. We consider two bit-level

operations: Bit-shifts on fixed-length integers and Bitwise
operators.

3) Grammar: Conditionals on a secret Boolean con-

dition can be implemented either with if-statement syn-

tax or a multiplexer operator, though we require an ex-

plicit language construct. We consider Array Access with

a public index and the harder problem of array access

with a Private Index. The latter can be implemented as

a linear-time multiplexer (Mux), native ORAM support

(ORAM) or a library for ORAM (Lib).

D. Implementation Criteria

In this section we define architectural and crypto-

graphic criteria, summarized in Table III. We note the

main Development Language for each framework. Gar-

bled circuit protocols can significantly improve perfor-

mance by using AES-NI, an extension to the x86 instruc-

tion set that speeds up AES encryption and decryption.

1) Architecture: We define three broad architecture

categories. Independent frameworks develop novel lan-

guages and compilers: from limited, domain-specific

languages that interface with existing general-purpose
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EMP-toolkit C++ � � � � � � � � � �� �

Obliv-C OCaml, C � � C � � � � � � � �

ObliVM Java � � � � � � � � � � �

TinyGarble C/C++ � � Verilog � � � � - - - -
Wysteria OCaml - � � � � � - � � - ��

ABY C++ � � � � � � � � � � �

SCALE-MAMBA Python,C++ - � � � � � - � � �� �

Sharemind C/C++ - � � � � � - � � � �

PICCO C/C++ - � C � � � - � � � �

Frigate C++ - � � � � � � - � � ��

CBMC-GC C++ - � C � � � � � � � ��

TABLE III: Details on architectural and implementation details. Partial support (��) is explained in Section V-D.

languages to stand-alone environments. Some frame-

works are Extensions of an existing language. These may

modify or extend existing compilers to add functionality

or take a compiler intermediate state as input. Library
frameworks are fully implemented in an existing lan-

guage. They generally define a secure type class and

methods for circuit construction and protocol execution.
2) Computation Model: We consider whether the un-

derlying computation model is over an Arithmetic field or

is based on Boolean circuits. Garbled circuit implemen-

tations can generate circuits On-the-Fly, starting runtime

execution before the circuit is fully generated. This can

reduce resource consumption, allow dynamic array and

loop bounds, and reduce overall program runtime.
3) I/O: Input is typically read from a file, but some

frameworks allow Arbitrary Formatting, rather than a

specific input format. (We’ve produced input generation

scripts for our sample programs.) We note whether the

framework supports Different Input types from each

party. Frameworks should support Array Output (a ��

indicates array elements must be returned one at a time)

and Multiple Output, where a single party receives two or

more output values in a single computation (a �� indicates

multiple values must be wrapped in a struct).

In Section VI, we comment specifically on restrictions

in the I/O file formats, including support for arbitrary-

size integers. We recognize that many frameworks are

produced in an academic setting that may not value

“engineering problems” such as I/O, but we found that

the significant usability impact of these capabilities make

them worth discussing in this survey.

E. Performance

In this work, we focus on usability and do not bench-

mark framework performance (e.g. run-time, bandwidth,

memory-usage, circuit depth). We believe a quantitative

evaluation of our sample programs would not accurately

represent the performance abilities of each framework.

There are several reasons why theoretical efficiency

metrics are not always applicable in practical MPC archi-

tectures, and we found that direct comparison between

different models was often misleading. Circuit size and

depth have different implications in garbled circuit and

secret-sharing-based protocols, and many frameworks

never generate a full circuit for comparison. Execution

time varies based on the framework architecture, and

preprocessing phases and other variations in execution

architecture further complicate timing measurements.

Variations in protocol family and threat model mean

that most frameworks are not directly comparable, and

our choice of benchmarking function will have a major

effect on the relative speed of the frameworks. Our sam-

ple programs are designed to reveal the expressive capa-

bilities of a framework and do not necessarily represent a

practical MPC use case. A stand-alone measurement for

a single run of one of our programs would not take into

account the context (typically part of a larger system)

in which a secure computation may be evaluated in

practice.

We do not wish to disservice incomparable frame-

works by providing concrete numbers for impractical

test cases. Although a worthwhile and practically useful

endeavor, producing a realistic testing framework is

beyond the scope of this project.

VI. FRAMEWORKS

In this section, we discuss each framework in detail,

elaborating on limitations noted in the tables and on the

overall usability of each framework. We make recom-

mendations on appropriate use for each framework. We

emphasize that many of these frameworks are academic

projects, and are therefore subject to the engineering

constraints of such an endeavor. Even as we describe the

limitations of these compilers, we wish to emphasize the

significant contributions that each has made to the field.



A. EMP toolkit

EMP toolkit [122] is an extensive set of MPC frame-

works based on garbled circuits. The core toolkit in-

cludes an oblivious transfer library, secure type classes,

and several custom protocol implementations. We tested

two protocols: a semi-honest implementation of Yao’s

garbled circuit protocol, and a maliciously secure pro-

tocol with authenticated garbling [124]. The toolkit

includes three maliciously secure protocols we did not

study: a two-party computation that checks input valid-

ity [88], a two-party computation library [123], and a

multi-party protocol [125].

a) Semi-honest: The implementation of Yao’s gar-

bled circuit protocol is a C library defining secure

type classes and operations. We found it intuitive for

non-expert C developers. The library structure allows

developers to use C arrays and structs to hold secure

values, and provides simple mixed-mode computation

and can generate circuits on-the-fly.

The framework supports arbitrary-size integers and

floating-point numbers. Although arbitrarily large values

can be initialized from a string, output is restricted to C

types; larger values can be (inefficiently) returned as bit

arrays. There is little explicit language documentation,

but the code was relatively clear. The library can output

a protocol-agnostic circuit, but this is not documented.

b) Malicious Authenticated Garbling: This library

is primarily an implementation of a custom garbling

protocol. We were able to run the included pre-compiled

circuit examples and several of our own examples. How-

ever, supporting features are limited: functions must be

encoded as a circuit prior to computation using the semi-

honest library, and I/O is encoded in Boolean arrays.

Recommendation: We recommend the the EMP-

toolkit semi-honest library for general use. The entire

platform is well suited to academics looking to imple-

ment a novel circuit-based protocol due to the available

circuit generation and cryptographic libraries, but we

note that the end-to-end flow is not seamless.

B. Obliv-C

Obliv-C is an extension of C that executes a two-party

garbled circuit protocol. The main language addition is

an obliv qualifier, applied to C types and constructs.

Typing rules enforce that obliv types remain secret unless

explicitly revealed. Code within oblivious functions and

conditionals cannot modify public data, except within

a qualified ~obliv block, in which the code is always

executed. These rules allow programmers to reason about

data security and develop modular libraries.

The compiler combines these extended functionali-

ties with supporting C code to produce an executable.

The executable generates circuits on-the-fly. This allows

circuit sizes to depend on values not known during

compilation, but may result in under-optimized circuits.

We successfully used an Obliv-C ORAM library,

Absentminded Crypto Kit3, which implements several

ORAM variations and other useful primitives [131], [50].

Obliv-C extends C but many of the examples imply

an independent-language architecture, separating Obliv-

C code from C code. Example programs typically read,

process, and output data in native C code, performing

only the secure computation in Obliv-C code. However,

this abstraction is not enforced: it is possible to perform

I/O and call native C functions in Obliv-C files. While

many of the examples implement a strict separation

between supporting C code and secure Obliv-C code,

example documentation uses a mixed paradigm.

Several groups have used Obliv-C to implement se-

cure functionalities, including linear regression [62],

decentralized certificate authorities [83], aggregated pri-

vate machine-learning models [119], classification of

encrypted emails [70] and stable matching [49].

Recommendation: Obliv-C is a robust garbled circuit

framework. We recommend it to developers for general

use and to academics who wish to implement and

optimize useful libraries such as ORAM.

C. ObliVM

ObliVM compiles a Java-like language called

ObliVM-lang and executes a two-party garbled circuit

protocol. It aims to provide a language intuitive to non-

experts while implementing domain-specific program-

ming abstractions for improved performance.

ObliVM-lang allows custom data types and type infer-

ence. It implements a built-in efficient ORAM scheme.

ObliVM natively supports fixed-size integers, and in-

cludes a library for arbitrary sized integers.

However, documentation is limited, both for the lan-

guage (we identified several undocumented reserved key-

words), and for general usage. I/O is limited: it requires

a non-human-readable format, and we did not find a

method to return complex types (including structs and

arrays) or more than 32 bits of information. We did not

successfully implement the crosstabulation example.

Recommendation: Although ObliVM implements ad-

vanced cryptographic constructs, its usability for prac-

tical applications is significantly limited by its minimal

documentation and restricted I/O functionality.

D. TinyGarble

TinyGarble [118] repurposes hardware circuit genera-

tion tools to create optimized circuits appropriate for a

garbled circuit protocol. It takes a three-step approach:

first, it converts a function defined in Verilog to a netlist
format. Then it converts the netlist format to a custom

3https://bitbucket.org/jackdoerner/absentminded-crypto-kit



circuit description (SCD) and securely evaluates the

Boolean circuit using a garbled circuit protocol.

We found that the first step of this process requires

a closed-source logic synthesis tool (the Synopsys De-

sign Compiler) that converts a Verilog file to the un-

standardized netlist format. The authors reference an

open-source tool, Yosys Open SYnthesis Suite, but we

were unable to compile any examples (conversions from

Yosys-produced netlist files to SCD failed). The source

code for TinyGarble includes some pre-compiled netlist

files. While we could see every step for these examples

(Verilog source, netlist file, computation output), we

were unable to compile examples end-to-end and thus

do not make any claims about language functionality.

TinyGarble is preceded by JustGarble [12], a library

that garbles and evaluates circuits. JustGarble does not

include communication or circuit generation and is

therefore not a general-purpose framework. The gar-

bled circuit implementation in TinyGarble is a strict

improvement over JustGarble, including recent protocol

and circuit optimizations.

Recommendation: TinyGarble aims to leverage power-

ful circuit optimizers developed for producing hardware

circuits. Unfortunately, from a usability standpoint, the

lack of compatibility for Verilog compilers and lack of

standards around netlist formats meant that we were

unable to compile or run any new examples using the

TinyGarble framework. We believe, however, that the

MPC community could benefit greatly by leveraging the

power of existing circuit optimizers.

E. Wysteria

Wysteria [111] introduces a novel high-level func-
tional programming language. It guarantees that a dis-

tributed secure computation produces the same output

as a single trusted party. Wysteria supports an arbitrary

number of computation parties, and the software contri-

bution includes a front-end language, a type checker, and

a run-time interpreter that executes a Boolean-circuit-

based GMW protocol implementation [36].

Wysteria supports mixed-mode computation via a lan-

guage construct called a secure block. A secure block

is initialized with a set of parties and their inputs.

All operations in the block’s scope are compiled to a

Boolean circuit and executed as a separate computation.

The Wysteria codebase has changed since the original

publication of the paper, and the examples presented

in the paper do not compile. However, they provide

useful context for the architecture of a working program.

The repository includes several example programs that

run without errors, including a 6-party version of the

millionaire’s problem.

Wysteria includes a record type, which holds named

values of other types and can be output from a secure

block. Although Wysteria includes working examples

that pass an array as input to a secure block, we

were unable to replicate this for our inner product or

crosstabulation programs. The language has support for

iterating over arrays in secure blocks, and allows access

to individual array elements outside of a secure block.

We encountered other significant language limitations:

Wysteria only supports division by 2 in secure blocks,

and we did not find a way to use logical operators on

Booleans.

The Wys* project [112] built on the ideas of Wys-

teria, and attempted to create a fully-verified toolchain

for secure computation based on the F* programming

language. The F* language is undergoing rapid develop-

ment, however, and we were not able to compile Wys*.

Recommendation: Wysteria’s limited support for com-

plex data types, current lack of development, and out-

dated back-end circuit parser, mean that it should not

be used for developing complex or efficient protocols.

On the other hand, Wysteria is the only compiler we

examined that is intended to provide a system for

automatically verifying that the underlying multi-party

computation has the same functionality as the monolithic

program implemented by the developer, and the only

compiler with a functional-style programming language.

We recommend future compiler developers use Wyste-

ria’s type-based correctness and security guarantees as a

model.

F. ABY

ABY [48] is a mixed-protocol two-party computation

framework implemented as a C++ library. It aims to

give developers fine-grained control over computation

efficiency by providing a mechanism for mixing pro-

tocols. ABY switches between three protocols: The

GMW-based Arithmetic protocol uses an additive sharing

scheme with multiplicative triples on an arithmetic cir-

cuit. The protocol is based on those by [7], [90], [109].

The other protocols use Boolean circuits: the Boolean
protocol implements the original GMW protocol with an

XOR-based sharing scheme, while the Yao protocol uses

an optimized version of Yao’s garbled circuit protocol.

ABY has a significant amount of documentation that

provides a helpful framework for understanding the

capabilities of the framework. This includes a slightly

outdated developer guide, an extended README file,

and a variety of commented examples.

Secure data is limited to unsigned C integer types:

ABY does not support arbitrary-length integers or an

explicit Boolean type, although it allows one-bit integers

that function equivalently. It supports some floating-point

operations and is actively developing this functionality.

ABY allows secure data stored in a C struct. ABY sup-

ports C++ arrays, as well as special SIMD constructions



for highly efficient parallel operations. Although ABY

provides functions for creating and populating SIMD

“shares” retrieving individual results requires operating

on the internal representation of secret data, which is not

well-supported.

The ABY developers have used it to implement several

secure computation systems [3], [34], [92], [108].

Recommendation: ABY provides a powerful, low-

level cryptographic interface that gives the developer

significant control over performance. ABY is targeted

at users who are familiar with MPC protocols and

the circuit model of computation. We recommend it to

developers with sufficient cryptographic background.

G. SCALE-MAMBA

SCALE-MAMBA implements a maliciously secure

two-phase hybrid protocol and supersedes the SPDZ

framework. MAMBA is a Python-like language that

compiles to a bytecode representation. SCALE imple-

ments a two-phase protocol which offloads all public-key

operations to an offline pre-processing phase, generates

three types of shared randomness to use during protocol

execution, and executes an optimized hybrid protocol

based on previous work [18], [46], [103].

SCALE-MAMBA has a significant amount of docu-

mentation, covering the differences from the previous

SPDZ system, installation and runtime instructions, up-

dated language documentation, and protocol primitives.

The example programs are unit-style tests but are not

explicitly documented. A community bulletin board4

hosts discussion and questions about the framework.

The SCALE-MAMBA framework allows developers

to define their own I/O classes. This provides an ex-

tremely flexible interface. We did not implement a cus-

tom I/O class. The framework’s secure channel setup

requires users to produce a mini certificate authority in

order to run a computation.

Running our sample programs with a simple full-

threshold secret sharing scheme required significant

memory resources. However, the system offers multiple,

customizable options for a secret-sharing scheme, and in-

cludes programmatic tools for offline data generation in

certain contexts. For testing purposes, SCALE includes

an option to run with fake (insecure) offline data.

Integer size is determined by the field size, which

must be chosen at compile time. Standard full-threshold

sharing supports a modulus of up to 1024 bits. SCALE-

MAMBA supports most bit-shift operations and includes

Python-style tuples, which we consider to be a less

powerful type of struct. Fixed-point numbers are fully

supported, and floating-point numbers partially imple-

mented. It has ORAM support, which we did not test.

4https://groups.google.com/forum/#forum/spdz

Recommendation: We recommend SCALE-MAMBA

for a variety of uses: it is flexible, supports an arbitrary

number of parties and has strong security guarantees,

though it may require significant computing resources.

H. Sharemind MPC

Sharemind [24] is a secure data processing plat-

form and a trademark of Cybernetica, a research-

and-development-focused technology company based in

Tallinn, Estonia. We used the Sharemind MPC platform,

which securely executes a function written in the SecreC

language. The framework executes a three-party hybrid

protocol using an additive secret sharing scheme.

The Sharemind MPC platform explicitly defines three

parties: clients, who input values; servers, who define

and run the secure computation; and outputs, who receive

the output of the computation. Server code is written in

the SecreC language and executed using Sharemind’s

secure runtime, while client and output code uses a

client library in a common programming language and

is executed using standard compilers. We developed our

sample programs using a C client library; the platform

also provides libraries in Haskell, Java, and JavaScript.

Sharemind MPC implements a custom additive secret-

sharing scheme over a fixed-size ring. These fixed-size

integers have behavior consistent with traditional C inte-

gers, and the framework includes a floating point library.

The protocol is written for exactly three servers, but there

is support for arbitrarily many parties secret-sharing

their inputs among the three computation servers into a

database structure. Our samples passed all input values

from a single client program. The SecreC language is

expressive and well documented online5. The supporting

client libraries are not as well documented.

The Sharemind MPC platform has several licensing

options6 through Cybernetica. We used the academic

server. This license gave us access to the protocol im-

plementation. The platform also includes an open-source

simulator, which includes the SecreC language, its stan-

dard library, and an emulator for the secure computation.

The emulator is available as a VM and as compilable

source code; we successfully ran our examples on both

versions. The emulator does not support client code and

arguments must be passed on the command line.

As part of the academic license, we had access to

several Sharemind employees who provided “reasonable

assistance” throughout the development process, and we

consider this to be an online resource.

Recommendation: The Sharemind MPC platform is

suitable for a wide variety of purposes. We recommend it

to companies looking to implement secure computation,

5https://sharemind-sdk.github.io/stdlib/reference/index.html
6https://sharemind.cyber.ee/sharemind-mpc/



particularly for large or complex functionalities, as well

as to academics who require MPC as a tool for a project.

I. PICCO

PICCO [134], [133] is a general-purpose compiler

with a custom secret-sharing protocol. It includes three

main software contributions: a compiler that translates

an extension of C to a native C implementation of the

secure computation; an I/O utility that produces and re-

constructs secret-shared input and output; and a tool that

initiates the computation. PICCO executes computations

under a hybrid model, using an information-theoretic

protocol for multiplication [65] and custom primitives

for other operations. It supports an arbitrary number of

parties but requires an honest majority.

PICCO allows conditionals on private variables, but

does not allow public variables to be assigned within

the scope of such a conditional. It also allows indexing

arrays at a private location, though this is implemented as

a multiplexer, not an ORAM scheme. It supports pointers

to private data and dynamic memory allocation using

standard C-like syntax. The language supports single-bit

integer types to approximate Booleans and while we ran

provided examples, we were unable to successfully write

our own program that uses them.

The language is well-documented in the paper. The

code repository includes many examples in a C exten-

sion, but doesn’t include examples of the additional files

needed to compile and run a program end-to-end. The

process to compile and execute a secure computation is

lengthy but well-documented and requires multiple con-

figuration files and explicit generation and reconstruction

of secret-shared inputs and outputs.

Recommendation: PICCO is appropriate for develop-

ers or academics who require a true multi-party imple-

mentation. We found no correctness issues and it allows

a great deal of flexibility in configuring the computation.

J. Frigate

Frigate [101] compiles a novel C-like language to a

custom Boolean circuit representation for any number

of inputs. The framework emphasizes the use of good

software engineering techniques, including an extensive

testing suite and a focus on modularity and extensibility.

The circuit format minimizes file size, and the framework

includes an interpreter to efficiently interface between

generated circuits and other applications.

Frigate produces a circuit, so all operations are secure

by default. The type system is extremely simple, with

only three native types: signed and unsigned integers and

structs. While there is no explicit Boolean type, integers

are of arbitrary size and the language defines comparison

and bitwise operators, so it supports equivalent function-

ality. Global variables are not allowed. Frigate allows

arrays but they must be contained within structs. The

circuit compiler provides useful errors, and the source

code includes a brief description of interpreter options

and a language description.

One usability issue is that basic arithmetic operations

are defined only for operands of the same type and size.

This may increase circuit size for some applications.

The framework does not include a simulator, so any

correctness checking requires a separate back end. To

test the circuits generated by Frigate, we wrote a tool that

converts Frigate circuits into a format suitable for exe-

cution in an implementation of the BMR protocol [15].

Recommendation: Frigate provides an expressive C-

like language for fast circuit generation and is a good

way to estimate the circuit size of a given computation.

However, even with our conversion tools that connect

Frigate’s circuit form to useful back-ends, executing an

end-to-end MPC computation requires relatively burden-

some action from the user.

K. CBMC-GC

CBMC-GC [77], [59] produces Boolean circuits from

a subset of ANSI-C. It is based on CMBC [37], a

bounded model checker that translates any C program

into a Boolean constraint then adapts the output of

this tool to produce an optimized circuit for an MPC

computation. The compiler can optimize for minimal

size or minimal depth circuits. It produces circuits for

any number of input parties; we compiled and simulated

sample programs with up to ten parties.

We did not find adequate documentation for the limi-

tations of the adapted subset of ANSI-C that CMBC-GC

compiles. For example, variable names for inputs to the

main file must be prefixed by INPUT_. Arrays cannot

be passed natively as arguments; they must be wrapped

in a struct. Non-default integer types, such as specific-

width integers, can be used but need to be explicitly

included. We were unable to compile a program using

C Boolean types. The framework includes a rudimentary

set of floating-point operations, and allows conditionals

on secret data. There are some configuration options,

such as circuit optimization technique, depth to unroll

loops, and a time limit on minimization.

CBMC-GC includes a tool for running circuits with

ABY (Section VI-F). We were unable to run an ex-

ample with this converter; it appears that the CBMC-

GC code references a deprecated ABY API. CBMC-GC

also includes a tool to output circuits in other formats,

including the Simple Circuit Description (SCD) used by

the TinyGarble compiler; Fairplay’s Secure Hardware

Definition Language (SHDL); and the Bristol circuit

format [120]. We tested the output of this tool with

TinyGarble’s compiler (Section VI-D), but were unable

to run any examples; we weren’t able to determine



whether the errors were due to circuit generation by

CBMC-GC or execution by TinyGarble.

Recommendation: CBMC-GC uses powerful tools to

produce optimized circuits, but we were not able to

successfully execute any of the circuits it produced.

VII. DISCUSSION

A. Leveraging Existing Compiler Research

Programming language research is a field dedicated

to creating compilers but little MPC research leverages

these techniques. Wysteria is a notable exception, but it

has significant engineering gaps that make it unusable for

practical computations. However, the MPC community

would benefit if frameworks took a more principled

approach to language design and verification.

One notable area for improvement is compiler correct-

ness. We found that while the frameworks were generally

successful in preventing security mistakes, many had

correctness issues. Defining and implementing type rules

that guarantee a correct output could reduce these issues,

which were often silent failures.

B. Documentation

Universally, the biggest obstacle when using MPC

frameworks was a lack of documentation. The commu-

nity has put thousands of hours into producing the work

presented herein, and even mediocre documentation

makes these contributions significantly more accessible.

Documentation comes in many forms and having

multiple types of documentation is helpful when using

a complex software system such as these. Our evalua-

tion criteria suggest several types we found particularly

useful, and we encourage developers and researchers to

produce multiple resources for system users.

In addition to static documentation provided by the au-

thors, active online resources can be extremely valuable.

These include archived correspondence, like an archived

mailing list, Google group or issue tracker on GitHub.

These resources can reduce the burden on researchers

who may be asked the same (or similar) questions re-

peatedly via private correspondence. Example programs

are also an important resource, and a repository where

the community can archive simple example programs

(e.g. like http://www.texample.net) would dramatically

improve usability and utility of these systems.

C. Standardization and Benchmarks

Many of these frameworks are designed around a

particular feature, such as a type system or an optimiza-

tion technique. Standardizing essential features common

across frameworks allows researchers to concentrate

their efforts on core features of their systems and pro-

vides a level of consistency for users. Standardization

could also set a more consistent baseline for performance

measurements. One potential issue is standardizing on a

soon-to-be-obsolete technology. For example, while we

could recommend a circuit format, this would not be

useful for modern hybrid framework models that use a

different intermediate representation.

Several projects are developing standardization in the

field. SCAPI [1], [56] defines a general API that provides

a common interface for cryptographic building blocks

and primitives commonly used in secure computation.

It aims to provide a uniform, flexible, and efficient

standard library for cryptographers to use in their MPC

implementations and includes significant documentation.

FRESCO [60] defines a set of Java APIs for function

description and protocol definition and evaluation. As a

demonstration, the project includes front-end code for

several sample projects and a new implementation of

the SPDZ protocol with MASCOT preprocessing. The

SCALE-MAMBA systems use a set of bytecodes as

an intermediate representation that have been reused in

other projects, such as the Jana compiler [5].

Benchmarking performance across frameworks

presents a challenge due to the variety of dependencies

on processing power, network bandwidth, network

latency, computation structure, and framework

architecture. Theoretical performance measures can be

difficult to measure in practice and frameworks that

excel in one benchmark environment may fare poorly in

another. Nevertheless, benchmarks can provide insight

into a framework’s strengths and weaknesses, and do

have value if they are not used as a sole measure of

a framework’s contribution. Recent work by Barak et
al. [8] provides an approach for performance comparison

between frameworks with compatible architectures.

We recommend that the community collectively de-

velops a consistent set of problems and associated met-

rics that demonstrate the expressive capabilities of a

framework and serve as a baseline for performance com-

parison. Standardized benchmarking has some known

issues: certain metrics may not be relevant to every

protocol; compilers may optimize for performance on

benchmark problems rather than in the general case; and

the performance measurement issues from Section V-E

remain. We hope that careful design of benchmarking

problems will mitigate these issues and provide a useful

tool for practitioners in the future.
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APPENDIX A

INNER PRODUCT CODE

Here we include snippets of code that implement the

inner product function in each language. They have been

slightly modified from the versions on Github for length.
a) EMP-toolkit: Examples are contained in a single

file. They are compiled to a single executable using
CMake, which is executed by both parties.

void innerprod(int bits,
string inputs_a[],
string inputs_b[], int len) {

Integer sum(bits, 0, PUBLIC);
for( int i=0; i<len; i++) {
Integer a(bits, inputs_a[i], ALICE);
Integer b(bits, inputs_b[i], BOB);
sum = sum + (a ∗ b);

}
cout << sum.reveal<int>() << endl;

}
b) Obliv-C: Examples are often split into two parts:

C header and implementation files that read input and
initialize network connections, and an Obliv-C file that
defines the secure computation. Examples are compiled
with a simple Makefile.

protocolIO io = args;
int len = ocBroadcastInt(io->input.size,1);
obliv int∗ v1 =
malloc(sizeof(obliv int) ∗ len);

obliv int∗ v2 =
malloc(sizeof(obliv int) ∗ len);

feedOblivIntArray(v1,
io->input.arr, len, 1);

feedOblivIntArray(v2,
io->input.arr, len, 2);

obliv int sum = 0;
for(int i = 0; i < len; i++){

sum += v1[i] ∗ v2[i];
}
revealOblivInt(&(io->result), sum, 0);

c) ObliVM: Examples are a single file defining the
secure computation. They are compiled and run using
several short scripts.

int main@n@m(int@n x, int@m y){
secure int32[public (n/32)] a;
secure int32[public (m/32)] b;
public int32 len = n/32;
for(public int32 i=0; i<len; i=i+1){

a[i] = x$32i˜32∗(i+1)$;
b[i] = y$32i˜32∗(i+1)$;



}
secure int32 sum = 0;
for(public int32 i=0; i<len; i=i+1){
sum = sum + (a[i] ∗ b[i]);

}
return sum;

}
d) TinyGarble: We were not able to produce work-

ing examples for TinyGarble.
e) Wysteria: We were not able to write a working

example for inner product in Wysteria; instead, we
include code to multiply 3 numbers. Wysteria examples
are contained in a single file. Each party runs the type
checker and executes the computation.

let parts = { !Alice, !Bob, !Charlie } in
let result @par( parts ) =
let w = wire { !Alice }:5 in
let w = (wire { !Bob }:2) ++ w in
let w = (wire { !Charlie }:1) ++ w in
let product @sec( parts ) =
(w[!Alice] ∗ w[!Bob] ) ∗ w[!Charlie]

in product
in wire { parts }:result

f) ABY: Examples are typically structured as sev-
eral C++ files: one that reads input and configuration
values and header and implementation files that define
and execute the secure computation. They are compiled
and executed with a complex Make system.

share BuildInnerProductCircuit(
share ∗s_x, share ∗s_y, uint32_t num,
ArithmeticCircuit ac) {
uint32_t i;
s_x = ac->PutMULGate(s_x, s_y);
s_x = ac->PutSplitterGate(s_x);
for (i = 1; i < num; i++) {
s_x->set_wire_id(0,
ac->PutADDGate(s_x->get_wire_id(0),
s_x->get_wire_id(i)));

}
s_x->set_bitlength(1);
s_out = circ->PutOUTGate(s_x, ALL);
return s_out;

}
g) SCALE-MAMBA: A single file defines the se-

cure computation. To execute, one must define crypto-
graphic parameters, set up a certificate authority, and run
scripts to compile and execute the program.

sum = sint(0)
for i in range(3):
x1 = sint(i)
x2 = sint(i∗2)

prod = x1 ∗ x2
sum = sum + prod

print_ln("%s", sum.reveal())

h) Sharemind: Examples require a SecreC file that
defines the function and may include supporting files for
input and output. Execution depends on which platform
is used, but the provided VMs include scripts to compile
and execute supporting and secure code.

import shared3p;
domain pd_shared3p shared3p;
void main() {

pd_shared3p uint64 [[1]] a =
argument("a");

pd_shared3p uint64 [[1]] b =
argument("b");

pd_shared3p uint64 c = sum(a ∗ b);
publish("c", c);

}
i) PICCO: Examples require a function defined

in PICCO’s C extension, two configuration files, and

encoded input files. Execution is a multi-step process:

users must define certificates and running several custom

command-line tools.
PICCO includes an inner product operator.

public int LEN = 10;
public int main() {

int A[LEN], B[LEN];
smcinput(A,1,LEN);
smcinput(B,2,LEN);
int p = A @ B;
smcoutput(p,1);
return 0;

}

j) Frigate: Examples are contained in a single file
and compiled with a command-line tool.

int result = 0;
for(sint i=0; i<LEN; i++) {
result = result +

(alice.data[i] ∗ bob.data[i]);
}
output1 = result;
output2 = result;

k) CBMC-GC: Examples are contained in a C file
and compiled and simulated with a simple Make system.

int product = 0;
for( int i=0; i<LEN; i++) {
product += INPUT_A.xs[i] ∗ INPUT_B.xs[i];

}
return product;
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