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Abstract—
Container-based applications are increasingly favored for

their efficiency in software development, deployment, and oper-
ation across various platforms. However, the growing number
of security and privacy attacks poses significant concerns.
Exploiting vulnerabilities within containers may compromise
the entire host system, as both share the same operating system.
Unfortunately, container defense mechanisms are inadequate
due to the ever-evolving and dynamic attack landscape.

In this paper, we systematize container attacks and defense
mechanisms. We systematically analyze the effectiveness of
(i) static container scanning tools proposed for vulnerability
detection and reveal their shortcomings, as well as (ii) exist-
ing run-time anomaly-based detection approaches. We then
establish an evaluation framework and comprehensively re-
evaluate cutting-edge anomaly detection techniques tailored
for containers using an extensive dataset of 51 real-world
vulnerabilities. We emphasize that existing defenses are inef-
fective in protecting containers against state-of-the-art attacks.
While anomaly detection-based approaches show potential in
addressing dynamic attack landscapes, their high false positive
rates and limited training data hinder practicality. Therefore,
our work highlights the urgent need for further research to
enhance the security of container-based applications.

1. Introduction

Container-based technology is increasingly used in de-
veloping and deploying applications across various plat-
forms since it provides several benefits [1]. Firstly, unlike
Virtual Machines (VMs) that include an entire operating sys-
tem and are more resource-intensive, containers are designed
to be efficient and lightweight, bundling only essential li-
braries for operation. Secondly, containers offer portability
as applications can be bundled into a single unit with
all dependencies, simplifying deployment across different
computing platforms. Thirdly, container technology provides
isolation between various applications and their respective
dependencies, ensuring that changes or updates in one con-
tainer do not inadvertently impact other containers running
on the same host machine. Furthermore, the encapsulation

feature of containers guarantees isolated activities within
a container, enhancing overall system stability. According
to the Cloud Native Computing Foundation, container use
in production has jumped by 300% from 2016 to 2020.
Further, a study conducted by [2] estimates that by 2030,
Global Container as a Service (CaaS) is expected to grow
by 22.5% with a revenue of 10.75 billion USD and Docker
will hold the majority market among the different container
technologies. Tech giants such as Google, Amazon, IBM,
Alibaba, and Microsoft provide container deployment and
orchestration services used to develop and deploy appli-
cations. Furthermore, an estimated 96% of organizations
currently use or plan to use container services [3].

However, recent works show that containers are vulner-
able to various attacks, such as unauthorized access [4],
[5], gaining privilege [6], [7], disclosing sensitive informa-
tion [8], [9], bypassing authentication [10], [11], or Denial
Of Service (DoS) attacks [12], [13]. Such attacks also affect
DockerHub (the biggest official repository for hosting and
sharing docker containers) [8], [14]–[17]. For example, the
Mitre database lists 571 vulnerabilities exclusively associ-
ated with the DockerHub container engine [18]. Further,
several tremendous attacks have taken place. For example,
UpGuard reported over 10 million log4shell exploitation
attempts every hour after Apache Log4j disclosed a vul-
nerability that affected distributed systems worldwide [19],
including containers in cluster systems [20].

Various defense techniques have been proposed to mit-
igate such attacks to safeguard containers. Existing defense
techniques can be categorized into four groups Static Scan-
ning, Image Hardening, Security Policies and Practices, Dy-
namic Anomaly Detection. Static Scanning-based defenses
regularly scan containers for vulnerabilities using tools like
Clair, Trivy, and Snyk [21]–[23]. Image Hardening-based
defenses enhance the security of containers by minimizing
the attack surface, e.g., removing unnecessary dependencies
[24], [25]. The defenses based on Security Policies and
Practices use containers to ensure compliance with the in-
dustry standards and regulations [26]–[28], for example, not
using a container as a root user or with a privileged flag and
use AppArmor and Seccomp profiles, which restrict read
access to sensitive files and filter system calls, respectively.
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Dynamic Anomaly Detection-based approaches regularly
monitor container activity and gather data regarding nor-
mal and anomalous activities [29], [30]. These approaches
use Machine Learning (ML) models to profile the normal
behaviors of the containers and detect any deviations, i.e.,
abnormal behaviors potentially caused by attacks.

In this paper, we aim to provide a systematization of
knowledge of state-of-the-art container attacks and defenses,
discussing potential approaches to address the limitations of
existing protection mechanisms. In summary, our contribu-
tions include:

• We systematize existing attacks and defenses and
point out the deficiencies of existing defenses
(Sect. 3 and 4). To the best of our knowledge,
this is the first work that provides a comprehensive
investigation and an extensive empirical evaluation
of state-of-the-art attack and defense mechanisms on
containers.

• We provide a framework to analyze and evaluate
attacks and defenses and conduct a comprehensive
empirical evaluation of existing protection mecha-
nisms (Sect. 5 and 6).

• We provide an extensive dataset generated from
state-of-the-art exploits used as a benchmark for
evaluating the attacks and defenses on containers
(Sect. 6). We will make our datasets and implemen-
tation available for research use.

• We point out the deficiencies of the existing defenses
and discuss potential approaches to prevent state-of-
the-art attacks effectively (Sect. 7).

2. Containers

Containers are a standalone and lightweight executable
bundle of software encompassing code, system tools, and
other dependencies needed to run an application. This en-
sures consistency and portability across diverse deploy-
ment platforms. The container image is the independent
executable bundle encapsulating both application code and
its dependencies. The container engine is responsible for
deploying and managing containers during runtime on the
host system, communicating with other components of the
container and the internet through REST APIs. Different
container technologies include Docker [31], Podman [32],
LXC [33], and Kata Containers [34], with Docker and
Podman being highly popular [35].

Virtual Machines (VMs) represent another virtualization
technology enabling the execution of various applications
on separate operating systems, known as ’Guest OS.’ VMs
include a hypervisor managing and deploying multiple VMs
on a physical host system, performing resource management
and isolation. VMs communicate with each other using LAN
and Virtual Adapters. Containers and VMs are built on top
of the Linux Kernel, which is the main component of the
host operating system. The Linux Kernel provides isolation
mechanisms such as namespace and cgroups, which both
containers and VMs utilize to isolate and use resources

effectively. Namespaces provide process isolation, ensuring
that processes within the same namespace cannot directly
access resources outside of their scope, whereas cgroups
provide limitations on system resources to prevent processes
from using up existing resources.

(a) (b)

Figure 1: Architecture of (a) Virtual Machines and (b)
Docker Containers.

Figure 1 shows the difference between a traditional VM
and a Docker container. Docker containers, renowned for
their lightweight nature and portability, they use custom
Docker Engines as daemons to deploy and run images.
Containers are faster and lighter than VMs because they do
not contain any operating system and depend on the host’s
operating system. Consequently, they require shorter boot
times and require less resources. However, containers pos-
sess security risks due to their weak isolation from the host
operating system compared to VMs. As containers depend
on the host’s operating system, any successful attack within
a container might compromise the entire host system. In
contrast, any successful exploit in a VM might be restricted
inside the VM’s operating system. Other VMs and the host
system will not be affected because of the hypervisor.

Containers provide performance and deployment advan-
tages over VMs, but their reliance on the host’s operating
system raises security concerns. Hence, there is a need for
understanding diverse attack vectors to exploit containers
and establish effective defenses to safeguard them.

3. Attack Scenarios

In this section, we systemize possible attack scenarios
on containers. These include software vulnerabilities, system
misconfigurations, and container engine and Linux kernel
issues. The threat models of containers and VMs differ
greatly due to their architecture. Containers share the under-
lying operating system kernel with the host system, which
means that applications and their dependencies are executed
directly on the host operating system. As a result, containers
generally have weaker isolation compared to VMs. Exploit-
ing a vulnerability in a container could break the isolation
between the host and the container, potentially allowing an
attacker to compromise the entire host system. In contrast,
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virtual machines have their operating system and are isolated
from the host and other VMs by the hypervisor. A successful
attack within a VM usually remains isolated within the
VM’s environment. To compromise the entire system, an
attacker must bypass the isolation mechanisms of both the
VM’s operating system and the hypervisor. Assuming that
an attacker gains control of a container, either directly or
indirectly, and extends the attack to the host system, we
have created a threat model as shown in Fig. 2. Overall,
there are several root causes of attacks:

• Downloading malicious container images and appli-
cations unknowingly by the user (Attack 1)

• Existing container vulnerabilities and their encapsu-
lated applications due to lack of updates (Attacks
2-5, 7-8), such as log4j

• Misconfigurations in container deployment, e.g., us-
ing privileged flags or leaving ports exposed (At-
tacks 2-9)

• Limitations such as deficiencies or bugs in the con-
tainer engine hinder both security measures and
optimum functionality of containers, e.g., docker cp
vulnerability (CVE-2019-14271) (Attacks 4-6, 8-9)

In the following, we will elaborate on each attack scenario
in detail.

Figure 2: Overview of attack Scenarios on containers:
Malicious Image Attacks, Remote Attacks to Container,

Container to Container Attacks, Container to Host
and Host to Container Attacks, Container to Container
Engine Attacks, Host to Container Engine, Appli-
cation to Container Attacks, Application to Container
Engine Attacks, and Remote to Container Engine.

Malicious Image. This concerns the case where mal-
ware is located inside the container, for instance, when
a regular user downloads malicious images from a public
container repository, such as DockerHub, to a benign ma-
chine [17], [14], [8], [16]. The malicious image contains
vulnerable packages that an adversary over the network
can exploit. This vulnerability can lead to various exploits,
such as reverse shell, crypto mining, and exposing creden-
tials [14], [36].

Remote to Container. The vulnerable component or
application is located in the container and can be exploited
from anywhere. The remaining elements in the system are
benign. This differs from ‘Malicious Image’ as an adversary
doesn’t need to upload the image to the public repository.
The vulnerability arises from preexisting software issues or
misconfigurations within the container [37]. These types of
vulnerabilities are often labeled ’remotely exploitable.’

Container to Container. This type of attack is initiated
if one of the containers in the host system has already
been compromised after being subjected to attack vectors
and . In this attack, the adversary leverages a malicious
container to compromise other benign containers within the
host. Attacks such as Meltdown [38] can divulge vital kernel
information from the host and all containers running in the
system. This enables a malicious container to gain vital
information regarding all the containers running within the
system. Spectre [39] is another attack that is detrimental
to containers. This attack tricks applications into accessing
arbitrary locations within the memory. This causes a leak in
kernel information, which the adversary then uses to gain
information regarding other containers in the system. Both
of these attacks [38], [39] attain vital information regarding
the containers and can cause different types of attacks, such
as DoS or Authentication Bypass.

Container to Host and Host to Container. The Con-
tainer to Host attack scenario assumes that at least one of
the containers in the system is malicious. The malicious
container can access confidential host information and try
to perform Authentication Bypass or Disclose Credential
Information Attacks to take control of the benign host or
containers. The malicious container can also perform a DoS
attack by consuming resources and causing other containers
and the host to stop functioning properly [40], [41]. Attacks,
such as container breakouts, can bypass the container-host
isolation and gain privileges equivalent to the root user [41],
[42].

The Host to Container scenario assumes the host operat-
ing system is malicious. This scenario is relatable with the
advent of Containers-As-A-Service (CaaS), where contain-
ers can be rented from the cloud and CaaS providers [43].
A malicious host can perform numerous attacks on the
container. Moreover, the malicious host can gain access
to the benign container using Return A Shell, Disclose
Confidential Information, and Authentication Bypass attacks
to monitor the activities of a container and discretely steal
information for ransomware, which can lead to substantial
financial loss [44].

Container to Container Engine. This scenario pre-
sumes that at least one of the containers in the system is ma-
licious. The malicious container takes advantage of vulner-
abilities and misconfigurations within the container engine
and tricks the engine into gaining escalated privileges [45].
This allows the malicious container to perform, e.g., a
DoS attack by manipulating resource isolation components
such as namespaces and cgroups. In addition, the malicious
container can masquerade as a benign container and steal
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vital information from the entity using the containerized
services. Since the container engine usually runs with root
privileges, compromising it can grant superuser access.

Host to Container Engine. This scenario presumes that
the host system is malicious. Given that the host has full
privileges, performing an attack against the container engine
becomes straightforward. Performing attacks via Docker
Socket or Docker Volume Mount are just a few examples.

Application to Container. This scenario assumes that
the application within the container is malicious. The ad-
versary tries to take control of the container using Gain
Privilege, Authentication Bypass, or Disclose Credential
Information attacks. For example, a container hosting a
database application can be impacted via attacks that can
expose the username and password of the user and take full
control of the container [11].

Application to Container Engine. In this scenario, there
is a compromised application inside a container. However,
the container itself is benign. The application attempts to
gain control of the container engine by exploiting vulnerabil-
ities in the container engine or its misconfiguration, such as
defective Socket APIs [46], [47]. This can lead to privilege
escalation, which can then be used to perform DoS attacks
on the host and other containers. The difference between
scenarios 7 and 8 is that application-to-container attacks
can impact only a singular container or containers associ-
ated with the specific application. However, application to
container-engine attacks can impact associated containers
and orchestrators such as Kubernetes and Docker Swarm,
hampering the lifecycle and deployment of other containers
unrelated to the specific application and leading to broader
service disruptions.

Remote to Container Engine. This setting assumes
that the container engine contains vulnerabilities [47], [48].
The adversary scans for exposed ports, and if found, the
adversary tries to gain privilege by exploiting the preexisting
vulnerability.

4. A Taxonomy of Attack and Defense Mech-
anisms

This section systematically analyses existing attacks, dis-
tinguishing between attack types and corresponding attack
techniques, before looking at defenses. We then highlight
the shortcomings of existing defenses.

4.1. Attacks

There are numerous attacks on containers using various
attack techniques [9]–[11], [41], [42], [49], [50], [54], [57].
To the best of our knowledge, the existing studies do not
provide a comprehensive categorization and analysis where
attack types are systematically categorized and their respec-
tive attack techniques are assigned. In our approach, we view
the techniques as subcategories under the attack types for
a more detailed and organized analysis. Since containers
have gained immense popularity, we aim to provide deeper

insights into the risks associated with containers and the
effectiveness of potential mitigations. Our categorization
methodology aligns with existing research [11], [41], [49],
[50], [54], [73]. However, we observed that each of these
works focuses on particular attacks. For example, [73]
concentrates on DoS attacks, [10] covers DoS, privilege
escalation, and authentication bypass, and [11] discusses
DoS, remote code execution, and gain privileges. To ad-
dress this inconsistency, we categorized the attacks into five
distinct types: executing arbitrary code, gaining privileges,
disclosing credential information, authentication bypass, and
denial of service. Subsequently, we identified and catego-
rized various attack techniques and their respective attack
surfaces, as illustrated in Table 1. To ensure clarity, we
refined the categorization of specific attack techniques such
as ’Integer Overflow’ (e.g., CVE-2014-01604) and ’crashing
the application’ (e.g., CVE-2015-5477, CVE-2016-7434)
by referencing their CVE-IDs and descriptions from the
National Vulnerability Database (NVD) [75] and assign-
ing these attacks to Authentication Bypass and Denial Of
Service categories, respectively. This standardized method-
ology has been consistently applied to all ad hoc attack
reports, contributing to clarity in future research. A detailed
overview of the CVE-IDs and their respective categorization
into specific attack types can be found in Table 5. This table
lists all considered CVE IDs associated with the defined
attack types.

Moreover, attack techniques may not be mutually exclu-
sively assigned to specific attack types. For example, SQL
injection can serve Authentication Bypass (AB) in the form
of password bypass (major objective), Disclose Credential
Information (DCI) in the form of gain login credentials
(major objective), or DoS attacks in the form of brute-force
(minor objective). A similar statement can be made for Gain
Privilege (GP) and DCI, where escalation of privilege of GP
can overlap with file system access and file name access of
DCI. While AB and DCI may sound similar, AB often refers
to direct system access without authentication, whereas DCI
exposes information like passwords or directory structures.

Further, specific attacks can only be successfully exe-
cuted when certain applications are present. Therefore, we
label the types of applications targeted by the attacks as
attack surfaces, which align with existing research [9], [54].
The terms Web App, Server, and Database refer to distinct
types of applications. The term Lib refers to any library that
may cause a vulnerability. Kernel refers to an attack surface
where the adversary takes advantage of a vulnerable Linux
kernel from a compromised container.

Execute Arbitrary Code. This attack involves running
arbitrary codes in the target system, focusing on web ap-
plications and servers. The attack aims to send arbitrary
commands to the victim to gain unauthorized access or
control of the system. One technique for this attack is to
‘Return a shell’. In this attack technique, the adversary takes
advantage of preexisting vulnerabilities within a container,
opens a shell, and takes control of the container [4], [51].
After gaining access, the adversary can steal, delete informa-
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Attack Types Attack Techniques Attack Surfaces ReferencesWeb App Server Database Lib Kernel

Execute Arbitrary Code

return a shell

✓ ✓ ✓ [49], [50], [41]
✓ ✓ [51]

✓ [52]
✓ [53]

return-oriented programming

✓ ✓ ✓ [49], [50], [41]
✓ [52], [11]

✓ ✓ ✓ [42]
✓ [30]

✓ ✓ ✓ ✓ [8]

remote code execution
✓ ✓ [9]
✓ ✓ ✓ ✓ [54], [17]

✓ [55]

Gain Privilege
escalation of privilege

✓ ✓ ✓ [49], [50], [41], [42], [56]
✓ [52], [11], [57], [29], [10]

✓ ✓ ✓ [58], [59], [60]
✓ ✓ ✓ ✓ [13], [5], [27]
✓ ✓ [9], [61]

✓ [62]
✓ [63]

kernel escalation ✓ ✓ ✓ ✓ [54]
✓ ✓ ✓ ✓ ✓ [64], [65], [26], [6]

Disclose Credential Information

gain login credentials

✓ ✓ ✓ [49], [50], [41]
✓ ✓ [9]
✓ ✓ ✓ [59]
✓ ✓ ✓ ✓ [54], [14], [8], [27]
✓ ✓ ✓ ✓ ✓ [64]

file system access

✓ [57], [29]
✓ ✓ ✓ ✓ [66], [67], [68]
✓ ✓ ✓ [58]
✓ [63]

file name access ✓ ✓ [9]

channel attacks ✓ ✓ ✓ [69]
✓ ✓ ✓ ✓ ✓ [26]

Authentication Bypass

password bypass
✓ ✓ ✓ [49], [50], [41], [8], [27]
✓ ✓ [9]
✓ ✓ ✓ ✓ [14], [67], [5], [68]

reduced security attributes ✓ ✓ ✓ [58]
✓ ✓ ✓ ✓ [15]

integer overflow ✓ [10], [11]

Denial Of Service

crash the application

✓ ✓ ✓ [49], [50], [41]
✓ ✓ [9]
✓ ✓ ✓ [59]
✓ ✓ ✓ ✓ [54]

consume excessive resources

✓ ✓ ✓ [70], [51], [71]
✓ ✓ ✓ ✓ [66], [72], [15], [68]
✓ ✓ ✓ [60]

✓ ✓ [12]
✓ ✓ ✓ ✓ [13]

✓ [57]
✓ [30], [28]

✓ [73]
✓ ✓ [74]

brute-force ✓ [29], [52]

spoofing ✓ ✓ ✓ ✓ ✓ [64]
✓ ✓ ✓ ✓ [72]

DoS overflow
✓ [10], [11]

✓ ✓ ✓ ✓ [14], [27]
✓ ✓ ✓ [42]

redirect traffic ✓ ✓ ✓ [58]

TABLE 1: Table showing Attack Types, Attack Techniques, Attack Surfaces, and References.

tion, etc. For example, an adversary sends crafted commands
to databases or web servers, which leads to opening a shell
and creating a pathway for the adversary [42], [49], [50]. A
similar attack technique over the network can be labeled as
remote code execution. For instance, exploits that spawn a

shell from attacks on cloud servers [9], [54]. If successful
attacks are unable to return a shell, they may cause vari-
ous issues, including memory corruption, denial of service,
or authentication bypass. In such cases, this technique is
called return-oriented programming (ROP). Although, in the
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broader scope, ROP can lead to other attacks, in this paper,
we will keep ROP exclusively for Execute Arbitrary Code.
This is done because no existing literature mentions ROP as
their attack technique for the remaining four attack types.
Gain Privilege. This attack aims to gain superuser privileges
by exploiting, e.g., vulnerable web applications, misconfig-
ured databases, and buffer overflows [11]. Modifications of
memory and files can be used to escalate privilege by buffer
overflow or modifying the superuser’s password, respec-
tively [11], [49], [50], [57]. Kernel escalation is a special
type of privilege escalation that involves gaining root access
by exploiting vulnerabilities in the kernel. The goal of kernel
escalation is to use the vulnerable kernel to obtain all its
restricted capabilities and gain root access [54], [64]. For
example, successfully exploiting a vulnerable kernel with
the help of ‘SYS ADMIN’, ‘NET ADMIN’, or other capa-
bilities can compromise the entire host system and provide
a pathway to affect other interconnected components.
Disclose Credential Information. This attack involves
unauthorized access and exposure of credentials, such as
usernames and passwords [49], [50], [14]. Further, these at-
tacks can also aim to gain the underlying information of the
systems, e.g., file names or directory structures, which can
be used to steal information or cause a DoS attack [9], [57],
[29], [58]. Several techniques allow the adversary to gather
credential information. For example, having the contents of
’/etc/shadow’ or ’/etc/passwd’ files can give an adversary
unlimited access. These attacks can exploit, e.g., vulnerable
web applications and servers. This sensitive information can
be leaked if users carelessly store credentials in plaintext
in an unsecured repository [76]. Further, the adversary can
also utilize side-channel attacks [69] to acquire sensitive
information by analyzing CPU and memory usage patterns
from the kernel message buffer [77].
Authentication Bypass. This attack involves exploiting vul-
nerabilities in authentication systems to gain unauthorized
access without providing correct credentials [8], [27]. This
can result from vulnerable web applications, exploitable
database systems, and flawed design in authentication mech-
anisms [10], [41]. SQL injection and cross-site scripting
attacks are primary examples of how an adversary can
bypass the password authentication method and gain access
to a person’s online account or database [49], [50], [14]. This
attack allows the adversary to, e.g., compromise a host and
run further attacks (see Sect. 3). Integer overflow can bypass
authentication by providing inappropriate data to specific
input fields, causing the program to behave erratically and
authenticate the adversary by mistake [10], [11].
Denial Of Service. This attack attempts to disrupt nor-
mal system functionalities, with the adversary focusing on
disrupting applications, the host, or infrastructure by ex-
hausting computing, communication, or memory resources.
DoS attacks focus on three resources: CPU, Memory, and
Network. A successful DoS attack on any of these three
domains significantly affects the system’s throughput and
performance. Excessive resource consumption by one con-
tainer can lead to starvation in others [70], [51], [66] and ap-
plication crashes due to unavailable resources [49], [50], [9].

Brute-force attack techniques [29], [52] are implemented on
database containers as infinitely long queries are created
that occupy most of their processing capacity. Spoofing
and redirecting traffic are attack techniques occupying the
network bandwidth, causing them to go offline [64], [58].
DoS overflow [10], [11], [14] occurs when the adversary
can cause memory corruption by triggering buffer or heap
overflow, causing the system to crash [41], [59], [54].

4.2. Defenses

We have extensively reviewed state-of-the-art defense
mechanisms developed to safeguard containers against vari-
ous attacks. These defenses are categorized into four distinct
groups: Static Scanning, Image Hardening, Security Poli-
cies and Practices, Dynamic Anomaly Detection. Table 2
illustrates existing research that employs different container
scanning tools to identify known vulnerabilities, detailing
the total number of containers analyzed and summariz-
ing their findings. Meanwhile, Table 3 categorizes existing
works based on defense type, method, and performance
metrics, including Precision (P), Recall (R), and F1-Score
(F1). True Positive (TP) is utilized for works lacking these
metrics to assess their performance. The table also includes a
list of abbreviations used throughout the discussion, ranging
from machine learning algorithms to security mechanisms.
In the subsequent sections, each defense category will be
explored in depth.
Static Scanning. These defenses use scanning tools to seek
known vulnerabilities in containers [22], [23]. Scanning
tools rely on data from different vulnerability databases [75],
[80] and utilize different algorithms for detecting and as-
signing severity ratings [81]. These approaches can detect
vulnerabilities in non-updated images, poisoned images, ma-
licious images, and even insecure configurations, as some
tools provide additional features to scan code for potential
vulnerabilities and information leaks [82]. The difference
between poisoned and malicious images is that the for-
mer involves legitimate images from a trusted source that
has been tampered with, whereas the latter is intentionally
crafted by attackers for malicious purposes and is spread
via various free, public container registries and forums.
Table 2 shows previous works that perform static analysis,
the tools used, the number of investigated containers, and
a summary of the findings. Clair [21] is the most used
tool as it has been around the longest. We also observe
an inverse relationship between the number of tools used
and the number of containers investigated as the experiment
becomes more complex with the involvement of more tools.
Shu et al. [14] and Socchi et al. [15] scan more than 350,000
containers using only one tool. Berkovich et al. [78], Javed
et al. [67], Brady et al. [51] and Kaur et al. [24] use multiple
tools but scan less than 30 images. Haq et al. [5] use four
different tools, more than any existing work, but do not
specify the number of containers they scan.
Image Hardening. These defenses remove unnecessary
packages to reduce the attack surface [25] or build an
application on top of a minimal base image to prevent the
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Approach Static Analysis Tools Containers FindingsClair Trivy Snyk Anchore JFrog Investigated
Shu et al. [14] ✓ 356,218 180 vulnerabilities on average, not updated in 200 days

Socchi [15] ✓ 440,524 Security features of DockerHub are mostly ineffective
Berkovich et al. [78] ✓ ✓ ✓ 3 Different tools are better suited to scan particular images

Katrine et al. [8] ✓ 2500 JavaScript and Python packages have the most vulnerabilities
DIVDS [79] ✓ 4 Checks for bugs when downloading from DockerHub

Brady et al. [51] ✓ ✓ 7 Uses scanning tools and virus scanners for anomaly detection
Javed et al. [67] ✓ ✓ ✓ 55 Tools are inaccurate, vulnerable OS packages are more prevalent

Zerouali et al. [16] ✓ 3000 JavaScript, Python and Ruby packages have the most vulnerabilities
Kaur et al. [24] ✓ ✓ 26 Image update and minification, removes most vulnerabilities.
Chen et al. [68] ✓ 132850 A tree-based detection approach performs better than Clair.
Haq et al. [17] ✓ ✓ ✓ ✓ Unspecified Tools produce mismatches for the same set of images

TABLE 2: Existing static analysis approaches.

Defense Type Approach Method Performance Metrics
P R F1 TP

Image Hardening Kaur et al. [24] Image update and minimizing size N/A N/A N/A N/A
Rastogi et al. [25] Remove unnecessary packages N/A N/A N/A N/A

Haq et al. [17] Trim down larger packages N/A N/A N/A N/A

Security Policies & Practices

Mattetti et al. [65] Restricts container operations N/A N/A N/A 1.000
Chelladhurai et al. [72] Restricting use of memory using cgroups N/A N/A N/A 1.000

Luo Yang et al [26] Limited CAP, SELinux, AppArmor N/A N/A N/A 1.000
Jian et al. [6] namespace and process inspection N/A N/A N/A 1.000
Lin et al [54] reinforcement of commit creds() N/A N/A N/A 1.000
Sun et al. [13] Reinforcement of namespace and MAC N/A N/A N/A 1.000

Gantikow et al. [63] Ruleset of Sysdig & Falco N/A N/A N/A 0.857
Lu et al [70] Graph Comparison N/A N/A N/A 0.847

Brady et al. [51] Anchore, Clair, Virus Total Scanner N/A N/A N/A 1.000
Ghavamnia et al. [27] Filter and limit system calls N/A N/A N/A 0.967

Wenhao et al. [28] Limited CAP, Seccomp, AppArmor, MAC N/A N/A N/A N/A
Lopes et al. [55] Automatic generation of Seccomp Profiles N/A N/A N/A 0.333

Zhu et al [9] AppArmor and LicSec profiling N/A N/A N/A 0.250
Chen et al. [68] Global Relationship Tree N/A N/A N/A N/A

He et al [59] Fine-grained eBPF access control N/A N/A N/A 1.000
Xiao et al [60] Jail container runtime, prevent file sharing N/A N/A N/A 1.000
Jiao et al. [56] Enhances eBPF program to filter system calls N/A N/A N/A 1.000

Dynamic Supervised

Abed et al [29] BoSC and STIDE 0.980 N/A N/A 1.000
Srinivasan et. al [57] Probabilistic Approach (MLE and SGT) 0.987 0.998 0.992 0.858

Huang et al. [30] Clam Antivirus and Random Forest N/A N/A N/A 0.667
Flora et al. [11] STIDE, BoSC, HMM 0.903 0.971 0.936 0.998

Marcos et al. [10] AB, DT, GNB, MLP, MNB, RF, KNN, SVM. 0.999 0.997 0.998 1.000

Dynamic Unsupervised

Zou et al. [74] Isolation Forest 98.04 N/A N/A 1.000
Onadele et al [49] Clustering (KNN, K-Means) 0.909 N/A N/A 0.979
Onadele et al [41] AutoEncoder, SVM 0.987 N/A N/A 0.811
Zhang et al. [52] One-Class-SVM 0.937 N/A N/A 1.000

Dynamic Self-Supervised Lin et al. [50] AutoEncoder, Isolation Forest, Random Forest 0.990 N/A N/A 0.841

TABLE 3: Existing defenses excluding static scanning approaches. P: Precision, R: Recall, F1: F1-Score, TP: True Positive,
AB: AdaBoost, DT: Decision Tree, GNB: Gaussian Naive Bayes, MLP: Multi-layer-Perceptron, MNB: Multinominal Naive
Bayes, RF: Random Forest, KNN: K-Nearest-Neighbors, SVM: Support-Vector Machine, MLE: Maximum Likelihood
Estimator, SGT: Simple Good Turing, HMM: Hidden Markov Model, BoSC: Bag of System Calls, STIDE: Sequence
Time-Delay Embedding, MAC: Mandatory Access Control and CAP: Capabilities

buildup of unnecessary applications in the form of bloat-
ware [24], [5]. However, removing unnecessary packages
is not straightforward and can hamper the execution of
applications [24].
Security Policies & Practices. These defenses provide
certain policies and practices to prevent breaches through
containers. Firstly, using the container as root or in priv-
ileged mode is highly discouraged, as breaking out from
such a container will provide the adversary with root access.
Secondly, several security tools should be applied, e.g.,
Seccomp [83], AppArmor [84], SeLinux [85], Capability
filters [86], before launching a container. Table 3 provides

extensive use of those tools to strengthen container security
see [72], [26], [6], [54], [13], [9], [65]. These security
components provide rigid access to system calls, capa-
bilities, and privileges. For example, AppArmor restricts
applications from accessing specific files, such as the file
containing credentials. Seccomp allows users to set up a
filter to prevent using certain system calls to break out of
a container. Dropping specific capabilities will prevent the
container from starting up with elevated privileges. SELinux
creates rules and security policies regarding which files can
be used and accessed. Further, [63] describes how different
rule sets of Sysdig [87] and Falco [88] can prevent exploits
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Static Scanning Image Hardening Security Policies & Practices Dynamic Anomaly Detection

Return A Shell [30], [8], [17] [17] [42], [54], [55] [49], [50], [41], [11], [30]
[79], [16]

Gain Privilege
[17], [79] [17] [42], [54], [56], [59], [63] [49], [50], [41], [52], [11]

[60], [13], [27], [64], [65] [10], [57]
[26], [6]

Disclose Credentials [8], [14], [66] [42], [54], [27], [63], [64] [49], [50], [41], [57], [29]
[67], [24], [16] [24] [26], [68], [69]

Authentication Bypass [8], [14], [15], [17] [17] [27], [64], [68] [11]

Denail Of Sevice
[51], [30], [14] [25], [24] [54], [27], [13], [64], [68] [49], [50], [41], [52], [64]
[66], [15], [24] [70], [72], [28] [30], [57], [11], [51]

[79], [16] [74], [29], [10], [60]

Limitations

Cannot mitigate zero-day Difficult to detect incur overhead Difficult to train and detect
and run-time attacks and remove due to lack of training data

Inconsistencies Can break software limits functionalities due to High positive rates
high false positives dependency limited syscalls and capabilities

Ease of Use Simple Moderate Complex Complex

TABLE 4: Overview of applying defenses against attacks and limitations

as these tools can trace system calls. [70] use graph com-
parison whereas [51] uses scanning tools and virus total
scanners [89] to detect anomalies in a container system.
Dynamic Anomaly Detection. These defenses adopt ma-
chine learning algorithms to detect anomalies in the runtime.
The detection model looks for subtle changes in certain
features, such as system calls, or performance metrics (CPU,
memory, and network) generated by benign and malicious
workloads. For instance, Bag and Sequence of System Calls
(BoSc and STIDE) are used as supervised anomaly detec-
tion by [29], [11]. Srinivasan et al. [57] use the Maxi-
mum Likelihood Estimator (MLE) and Simple Good Turing
(SGT) to detect anomalies. Onadele [49] employs clustering
techniques for the detection of anomalies. Huang [30] uses
the Random Forest (RF) and the Clam Antivirus [90] for
anomaly detection. Marcos et al. [10] perform anomaly
detection using eight supervised models. Further, several de-
fenses use unsupervised approaches such as Isolation Forest,
AutoEncoder, and Support Vector Machine [74], [41], [52].
Lin et al. [50] improve AutoEncoder-based unsupervised
approach [41] by introducing a self-supervised approach.
The self-supervised approach uses an Isolation Forest for
outlier detection in combination with an AutoEncoder to
reduce the false positive rate.

4.3. Limitations of existing defenses

Table 4 outlines the defense mechanisms applicable to
specific attack types and their limitations. Static Scanning
based defenses cannot detect run-time attacks and suffer
from inconsistencies and false positives [17], [67]. More-
over, static scanning tools cannot detect zero-day attacks,
and there is a significant delay from when a zero-day
vulnerability is detected until it is updated in scanning tools.
Among the defenses, this method is the simplest to use. Im-
age Hardening defenses face a critical challenge as it is hard
to pinpoint unnecessary packages, resulting in additional
complications, such as breaking the software dependency
if a package is incorrectly removed. Little work has been
done on this mechanism compared to other defenses, as

shown in Table 4. Further, this method is more challenging
to use than Static Scanning. Although many works exist on
Security Policies & Practises based defenses, this mech-
anism introduces an increase in overhead. Further, some
techniques like filtering system calls [59], [60], [27] are hard
to implement in practice since restrictions of the system call
are complex and may prevent a container from functioning
correctly. Dynamic Anomaly Detection is more sophisticated
than the other defense mechanisms. Selecting an effective
detection model is challenging since existing works show
varying performance for different ML algorithms. Moreover,
building a robust detection model is difficult due to the
scarcity of training data. Also, there is no dataset on which
a model may be trained nor a benchmark against which
the results of a model may be compared. Further, detection
models are often trained on a dataset generated from specific
deployment settings that might not generally be effective
when applied in other settings, as we show in Sect. 6.

5. Evaluation Framework

We propose an evaluation framework that combines
both static and dynamic evaluations, as shown in Fig. 3.
Existing works [17], [51], [78] have demonstrated that
combining multiple scanning tools results in a higher de-
tection rate of vulnerabilities compared to relying on a
single tool. Therefore, our static evaluation employs a va-
riety of scanning tools to scan container images and as-
sess their performance. The dynamic evaluation compares
the effectiveness of multiple machine learning and deep
learning algorithms for anomaly detection. This evaluation
is essential as existing literature [10], [74], [41], [30],
[49], [52], [90] lacks systematic approaches and relies on
a disparate dataset, casting doubt on the readability of their
experimental findings. Lastly, we evaluate the effectiveness
of each method in detecting vulnerabilities and determine
whether it is preferable to utilize a combination of both
methods for anomaly detection. In the following, we will
discuss these components in detail.
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Figure 3: Overview of Evaluation Framework.

Static evaluation. This component utilizes various scanning
tools like Trivy [22], Snyk [23], Clair [21], and Grype
[91] to identify preexisting vulnerabilities in containers.
Anchore [92] is excluded due to its discontinuation and
replacement with Grype. The scanning results are merged
and compared to address inconsistencies found in previous
research. The outcomes of the tools are aggregated in CSV
format. Then, the data acquired shall be inserted into a
database for further analysis using basic SQL operations.
The additional analysis serves a different purpose than
merely detecting the exploit. It involves processing the
collected data and comparing the outcomes of various tools
that evaluate the same set of images.

Dynamic Analysis. This component evaluates and compares
the performance of multiple machine learning and deep
learning algorithms for detecting attacks on containers. Data
Collection & Feature Extraction component gathers traces
of containerized applications and is based on the works of
Lin and Onadele [41], [49], [50] in combination with their
dataset and the dataset collected by ourselves. We employ
Sysdig [87] (the most widely used open-source tool), which
can be attached to containers to record the system calls
generated. System calls are the backbone of kernel opera-
tions and can provide insight into the tasks and performance
within a container. Sysdig returns the system call used along
with a timestamp, making it ideal as a logging tool. The
system calls are then accumulated every 0.1s and generated
as a frequency vector. To be consistent with previous works
and handle the diversity of system calls, the dimensions
of the frequency vector are expanded to include all 555
Linux system calls. To simulate the application running,
several workloads are applied to the containers via Apache
Jmeter [93] for 7 minutes. The exploits are carried out at
the fourth minute, and the time is recorded till the exploit
succeeds. Each experiment is repeated four times with an
increasing workload of 1X, 2X, 4X, and 8X. The data
collected in the first three minutes is labeled as benign,
while the rest is labeled as malicious. Supervised Learning

consists of algorithms that will learn with the help of labeled
data. As each exploit is repeated 4 times, we repeat the
experiment using stratified K-Fold cross-validation (k=4)
for supervised learning. All algorithms (Random Forest,
AdaBoost, Decision Trees, K-Nearest Neighbor, and Multi-
Layer Perceptron) mentioned in Tab. 3 will be evaluated.
Unsupervised Learning will consist of algorithms that learn
without labeled data. We use the first three minutes of data
for training and the last four minutes for testing the model.
This is different from supervised learning as supervised
learning needs both attack and benign data for training.
The typical defenses using AutoEncoder and K-Means men-
tioned in Tab. 3 will be evaluated. System Call Exploit
Grouping involves taking the system calls for each catego-
rized exploit and combining them together. Each category
will be trained and validated separately by different anomaly
detection algorithms. This will provide deep insight into how
well the anomaly detection algorithms work for different
types of exploits and whether a specific model can maintain
high accuracy across all types of exploits. Additional details
about the exploits are given in Sect. 6. Output Evaluation
component assesses the static and dynamic analyses. Firstly,
we shall compare the results of the static analysis to those
of the dynamic analysis and deduce which scanning tools
and anomaly detection algorithms perform the best.

Dataset. The existing dataset includes the system calls for
41 exploits. The time taken for the exploit to succeed is
also recorded. This dataset is published by CDL [41] and
includes some of the most common exploits published over
the years. Previously they implemented 33 exploits [49],
which was later expanded to include 41. The exploits range
over various applications from the front to the back end
encapsulated within a container. The new dataset comprises
9 exploits that we have generated by ourselves. This dataset
includes some of the most recent and up-to-date exploits
published as listed in Table 5. To collect this data, four
docker containers were set up for each vulnerability under
Ubuntu 16.04 LTS. Different workloads were delivered to

4581

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on March 21,2025 at 12:19:27 UTC from IEEE Xplore.  Restrictions apply. 



Scenario CVE ID Severity Applications Attack Types Scanning Tools
1 2 3 4 5 N/A A B C D

Dataset d1

CVE-2012-1823 High PHP ✓ ✓
CVE-2014-0050 High Apache Commons ✓ ✓ ✓
CVE-2014-0160 Medium OpenSSL ✓ ✓ ✓ ✓
CVE-2014-3120 Medium Elasticsearch ✓ ✓ ✓ ✓
CVE-2014-6271 Critical Bash ✓ ✓ ✓ ✓ ✓
CVE-2015-1427 High Elasticsearch ✓ ✓ ✓ ✓
CVE-2015-2208 High phpMoAdmin ✓ ✓
CVE-2015-3306 Critical ProFTPd ✓ ✓ ✓ ✓
CVE-2015-5477 High BIND ✓ ✓ ✓ ✓
CVE-2015-5531 Medium Elasticsearch ✓ ✓
CVE-2015-8103 High JBoss ✓ ✓
CVE-2015-8562 High Joomla ✓ ✓
CVE-2016-3088 High Apache ActiveMQ ✓ ✓ ✓ ✓
CVE-2016-3714 Critical ImageMagick ✓
CVE-2016-6515 High OpenSSH ✓
CVE-2016-7434 Medium NTP ✓
CVE-2016-9920 Medium Roundcube ✓ ✓
CVE-2016-10033 High PHPMailer ✓
CVE-2017-5638 Critical Apache Strutus 2 ✓ ✓ ✓ ✓
CVE-2017-7494 Critical Samba ✓
CVE-2017-7529 Medium Nginx ✓
CVE-2017-8291 Medium Ghostscript ✓ ✓
CVE-2017-8917 High Joomla ✓
CVE-2017-11610 Critical Supervisor ✓ ✓ ✓
CVE-2017-12149 High JBoss ✓
CVE-2017-12615 Medium Apache Tomcat ✓
CVE-2017-12635 Critical CouchDB ✓ ✓
CVE-2017-12794 Medium Django ✓
CVE-2018-11776 Critical Apache Strutus 2 ✓ ✓ ✓ ✓
CVE-2018-15473 Medium OpenSSH ✓
CVE-2018-16509 Critical Ghostscript ✓ ✓
CVE-2018-19475 Critical Ghostscript ✓
CVE-2018-19518 High PHP ✓ ✓ ✓ ✓
CVE-2019-5420 High Rails ✓ ✓ ✓

Dataset d2

CVE-2019-6116 Medium Ghostscript ✓
CVE-2019-10758 Critical VM ✓
CVE-2020-1938 Critical Apache Tomcat ✓ ✓ ✓ ✓
CVE-2020-17530 Critical Apache Strutus 2 ✓ ✓ ✓ ✓
CVE-2021-28164 Medium Eclipse Jetty ✓ ✓ ✓ ✓
CVE-2021-28169 Medium Eclipse Jetty ✓ ✓ ✓ ✓
CVE-2021-34429 Medium Eclipse Jetty ✓ ✓ ✓ ✓
CVE-2021-41773 Medium Apache HTTP Server ✓ ✓
CVE-2021-44228 Critical Apache Solr ✓ ✓ ✓ ✓

Dataset d3

CVE-2022-0847 High Linux Kernel ✓ ✓
CVE-2022-21449 High Oracle Java SE ✓
CVE-2022-22963 Critical Spring Cloud ✓
CVE-2022-22965 Critical Spring MVC ✓ ✓ ✓ ✓
CVE-2022-26134 Critical Confluence Server ✓
CVE-2022-42889 Critical Apache Commons ✓ ✓ ✓ ✓ ✓
CVE-2023-23752 Medium Joomla ✓
CVE-2021-42013 Critical Apache HTTP Server ✓ ✓

Total Counts 51 25 3 9 22 6 6 19 3 13 19

TABLE 5: The effectiveness of different scanning tools in detecting vulnerabilities.(1-Execute Arbitrary Code, 2-Gain
Privilege, 3-Disclose Credential Information, 4-Authentication Bypass, 5-Denial Of Service, A-Grype, B-Clair, C-Snyk, D-
Trivy).

each of the four containers using Apache JMeter, namely
1x, 2x, 4x and 8x.
Training And Testing Scenarios. Due to the presence of
data collected at different times and to perform extensive
and proper evaluation, we split the data collected into three
separate parts. The split of the dataset is done according
to when the subset of the dataset was published. Dataset
d1 includes the data for the first 34 exploits published in
2019 [41]. Dataset d2 includes the data for the following 9

exploits published in 2022 [50]. Dataset d3 includes the data
for the last 8 exploits that we performed for our experiments.
Table 5 contains the details for the three different datasets.
To test the robustness and validity of different models, we
propose three different scenarios to train and test the models.
Scenario S1: In this scenario, we train and test the detection
model with the same dataset using Stratified K-Fold Cross-
Validation, where k=4. Scenario S2: In this scenario, we
train and test the model with different datasets. This scenario
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aims to test whether a model can perform well with unseen
data. This is the reason why we will not be using Stratified
K-Fold Cross-Validation. Instead, we will use three traces of
one CVE from one dataset to train the model and one trace
of another CVE from the other dataset to test the model.
This process will be repeated four times for each CVE to
include all the traces until both datasets have been used
to train and test the models. Scenario S3: In this scenario,
we train and test the model with the entire dataset using
Stratified K-Fold Cross-Validation, where k=4.

6. Evaluation of Existing Defense Mechanisms

While Sect. 4 analyzes the advantages and disadvantages
of existing attacks and defenses, this section exposes further
limitations of the defenses in practices that cannot be seen
without extensive empirical evaluations in various settings.
For example, most existing approaches have high accuracy
but are evaluated on specific settings [10], [11], [41], [49],
[51]. In this section, we extensively and systematically
evaluate attack and defense mechanisms in a robust manner
and suggest potential defense mechanisms.

Following our evaluation framework presented in Sect.
5, we conduct statistic and dynamic analyses on 51 real-
world vulnerabilities archived in the National Vulnerability
Database (NVD) (see Tab. 5). To assess the effectiveness
of defenses, we use two key metrics: (1) True Positive
Rate (TPR) or Detection Rate (DR) indicates the ratio of
the correct number of vulnerabilities detected to the total
number of vulnerabilities, and (2) False Positive Rate (FPR)
indicates the ratio of the incorrect number of vulnerabilities
detected to the total number of benign samples.

6.1. Static Analysis

We evaluate all four scanning tools, Clair [21],
Trivy [22], Snyk [23], and Grype [91] as outlined in
Sect. 4.2 since they are widely adopted in industry and
extensively discussed in academia [17], [51], [67], [78].
Table 5 compares their results, including a separate N/A
column for attacks that couldn’t be implemented due to a
lack of vulnerable software, and these are excluded from
the preceding calculation. We observe that Clair has the
lowest detection rate of 6.67%. Snyk has the second-highest
detection rate of 28.9% and both Trivy and Grype achieve
the highest detection rate at 42.2%. Unfortunately, none of
the tools provide a detection rate above 50%, and only two
vulnerabilities are detected by the tools individually.

Figure 4 shows the severity ratings detected by the
tools when scanning the same sets of container images
containing the exploits. The higher the severity rating, the
more severe the vulnerability. The Unknown tag is given
to a vulnerability, that still does not have a valid severity
rating. Clair exhibits the lowest detection rate across all
levels of severity, except for the Low category. Snyk presents
a higher detection rate for the Low category, whereas Grype
demonstrates a higher detection rate for the Medium, High,
and Critical categories. The detection rate of Trivy is similar

to that of Snyk for Medium and Critical severities. It has a
higher detection rate than Snyk for the High category and
does not detect anything at all in the Negligible category.

Existing works evaluate these tools with commonly
known vulnerabilities, resulting in a high detection rate [8],
[17], [51], [78]. We aim to highlight their deficiencies when
identifying state-of-the-art vulnerabilities, as the detection
rate falls below 50% even when combining multiple scan-
ning tools. The inconsistencies in container scanning results,
combined with low detection rates, emphasize the necessity
for enhanced detection tools, whether as standalone tools or
in conjunction with current scanning technology.

Figure 4: Severity Ratings of the scanning tools

6.2. Anomaly Detection

In this section, we evaluate the state-of-the-art anomaly
detection algorithms divided into two groups, supervised and
unsupervised learning, as presented in Sect. 5.

6.2.1. Supervised Algorithms. To choose the optimum
parameters for each supervised algorithm, we used the
parameters from [10] along with GridSearchCV [94] and
experimented with some of the most common parameters of
each algorithm. Details are given in Tab. 6 in Sect. 9. For
scenario S2, there are six possible experiments with three
distinct datasets (d1d2, d1d3, d2d1, d2d3, d3d1, d3d2). For
example, d1d2 means training with dataset d1 and testing
with dataset d2. However, we focus on only four of those
(d1d2, d1d3, d2d3, and d3d1) that provide the best results.
We plot the ROC Curves for each scenario in Fig. 5. An
ROC curve (receiver operating characteristics curve) is a
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(a) (b) (c) (d) (e)

Figure 5: ROC Curves of (a) Random Forest, (b) Decision Tree, (c) AdaBoost, (d) K-Nearest-Neighbors, and (e) Multi-
Layer-Perceptron for all eight scenarios

Figure 6: True Positive Rates For Anomaly Class

graph plot of the FPR against the TPR that is typically
used as a performance metric for the model [95]. Figure 6
shows the detection rates for all scenarios. The xlabels are
given as Scenario trainDatasetTestDataset. Random Forest
(RF) performs well for scenario S1 as shown in Fig. 5a and
Fig. 6. For S2, the TPR falls under 60% due to testing with
unseen data. The TPR further falls when using d2 and d3 to
train the model, as these have lower training data than d1.
The TPR rises for S3 with more data. Decision Tree (DT)
performs well except for S2 d2d3 as shown in Fig. 5b, and
Fig. 6, where it achieves TPR and FPR of around 50%. For
other scenarios, the TPR is above 70% with an FPR of 20%.
For S3, the performance slightly falls, but it is still above
60%. The increased data of S3, might be causing the DT
to overfit, hence the fall in TPR. AdaBoost (AB) provides
the worst results compared to all evaluated algorithms (see
Fig. 5c). Figure 6 shows that AB archives the lowest TPR

across almost all scenarios, accompanied by an increasing
FPR. K-Nearest-Neighbor (KNN) does not perform well for
any of the scenarios as shown in Fig. 5d and Fig. 6. Apart
from S1 d3d3, all other scenarios have TPRs of less than
50% and the FPR is around 20% for the best and 90% for
the worst scenario. Multi-Layer-Perceptron (MLP) does not
perform well for any scenarios. Figure 6 shows TPRs below
10% across all scenarios, and Fig. 5e confirms this with an
FPR of above 60% for all scenarios.

In summary, the supervised algorithms do not work well
in detecting anomalies. RF and DT seem to classify the
anomaly class better than other algorithms. However, there
is room for improvement, as neither RF nor DT provide
consistent TPRs across the different scenarios, with results
falling in S2. From Fig. 6, we see that DT outperforms RF
for the S2 scenario. This may occur due to the RF overfitting
or the DT performing better due to feature prioritization.
The results can be improved by performing dimensionality
reduction before conducting the classification. Separating
the scenarios based on the application and fine-tuning the
algorithms might also yield better results.

Combining both static analysis and dynamic anomaly
detection increases the detection rate from 88% to 92%
while the individual rates are 50% and 88% respectively.

6.2.2. Unsupervised Algorithms. In this section, we ana-
lyze the detection accuracy of the widely used unsupervised
algorithms such as AutoEncoder and K-Means [96], [97].
As unsupervised training does not need labeled data, we
picked a different approach for testing these models as we
used only benign data (the first three-minute traces of the
workload) to train and the last four-minute traces to test the
models. We only experiment with S3 scenario.

To choose the optimum parameter for each unsupervised
algorithm, we used a combination of GridSearchCV and
threshold value. The threshold value is used for validation
purposes. Changing the threshold may increase the accuracy
(TPR), but may also cause high FPR as well.

AutoEncoders (AE): Autoencoders consist of neural
networks and contain an encode and decode region. The
model tries to replicate the input data by compressing and
decompressing the data with the help of neural networks.
The model during training is fine-tuned to minimize the
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(a) (b)

Figure 7: Detection rate (DR) of (a) AutoEncoders and (b)K-
Means across all thresholds

difference between input and output. After adequate train-
ing, the model can produce the output with minimum re-
construction error compared to the original input data. The
reconstruction error can then be used for anomaly detection.
For example, when the autoencoder produces results with
very high reconstruction errors, we can assume they came
from abnormal data inputs.

Our autoencoder consists of six layers apart from the
input and output layers, with the ReLu activation function
in the hidden layers and the Sigmoid activation function at
the output layer. The model was trained for ten epochs with
the input data. The training was done to minimize mean
squared error (MSE). Backpropagation is performed with
the root mean square with a learning rate of 0.05.

To determine the proper threshold, we use an intuitive
approach. We choose the threshold with the highest differ-
ence between true positive and false positive rates. This
value was found to be at the 40th percentile. Figure 7a
shows the change in true positive and false positive due to
a change in threshold. Choosing a lower threshold increases
the true positive rate, but it also increases the false positive
rate. The opposite is true when the threshold is increased.
At the 40th percentile, the true positive rate is 62%, and the
false positive rate is 54%. The entire autoencoder has been
implemented with Tensorflow.

K-Means (KM): K-means is a clustering algorithm that
tries to group data into different sub-groups or clusters.
After finding the optimum number of clusters, the algorithm
assigns each data point to the nearest cluster based on
some distance metric, such as Euclidean distance. Once
the clustering is complete, we set a threshold to check for
anomalies. The concept is that the data points situated far
from the center of the cluster, i.e., have the distances to
the center exceeding the threshold value are deemed to be
anomalies. We evaluate this approach with various values of
cluster k and found out that k = 20 is the optimum value
via the elbow method [98]. Any data points that did not
belong to any of the 20 clusters were identified as anomalies.
According to Figure 7b, the greatest difference between TPR
and FPR comes at the 4th percentile. At this threshold value,
the TPR is 25%, and the TPR is 18%. Raising the threshold
reduces both the TPR and FPR.

The unsupervised algorithms perform very poorly in
detecting anomalies due to their lack of labeled data. Even

though they perform better than some supervised algorithms,
they also give rise to FPR. The fact that the FPR trails
slightly behind the TPR means that neither of the algorithms
can accurately separate the anomaly class, from the benign
class. Repeating the experiment for other scenarios yields
similar or poorer results.

6.3. Specific Attack Type Detection

In this part, we evaluate the detection of different attack
types using supervised algorithms. We aimed to determine if
testing each attack type individually produces better results,
as different attacks have distinct characteristics. We group
the CVEs into specific attack types by manually going
through their description from NVD [75]. Table 5 shows
the different exploits and their attack types. Due to the
complex nature of each exploit, some CVEs encompass
multiple attack types. The supervised algorithms chosen for
this evaluation are the same as before (RF, DT, AB, KNN,
MLP). Figure 8 shows the detection rate for each algorithm,
for specific attack types.

Figure 8: Performance of supervised detection models on
different attack types. 1: Execute Arbitrary Code, 2: Gain
Privilege, 3: Disclose Credential Information, 4: Authenti-
cation Bypass, 5: Denial Of Service

Execute Arbitrary Code: None of the models can accu-
rately detect this type of attack. DT performs best with a
TPR of around 40%, and AB and KNN perform worst with
a TPR of around 5%. Gain Privilege: None of the models
can accurately detect Gain Privilege attacks. DT performs
best with a TPR of around 30%. The other algorithms detect
around 20%. Disclose Credential Information: DT detects
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around 60% for Disclose Credential Information attacks.
The other algorithms perform poorly, with AB having a
TPR of 0%. Authentication Bypass: None of the models
can accurately detect Authentication Bypass attacks. DT
performs best with a TPR of around 20%. The other al-
gorithms detect less than 20%. Denial Of Service: RF, DT,
and AB can detect Denial Of Service attacks with high TPRs
of approximately 70%, 95%, and 80%, respectively. MLP
performs the worst with a TPR of less than 20%.

The fact that DT performs best for all attack types corre-
sponds with our previous experiments. Perhaps prioritizing
a few features over others leads to better detection, but it
does not truly explain why there are such vast differences
between Disclose Credential Information and Denial Of
Service attacks. Perhaps the data distribution for these two
attacks makes it favorable for DT. Both Execute Arbitrary
Code and Authentication Bypass have higher amounts of
data, which may cause overfitting. It is also not clear why
AB performs significantly well for Denial Of Service attacks
but fails considerably for the other attack types.

7. Discussion of Potential Improvements

None of the scanning tools achieve a detection rate
greater than 50%. In fact, the best-performing tools, Grype
and Trivy, both have a detection rate of 42.2%. Combin-
ing the detection results of Grype, Snyk, and Trivy can
increase the detection rate to 46.7%. Combining the results
of multiple scanning tools would increase the detection
rate and reduce false positives. Nevertheless, relying solely
on scanning tools, even after combining multiple scanning
reports is inadequate to safeguard container systems.

All the anomaly detection algorithms have poor perfor-
mance. Out of the supervised algorithms, RF and DT per-
form better than the others as they provide a detection rate
of around 80%, on the dataset that part of the data has been
used for training. The performance falls by 20% for both
algorithms when tested with a new dataset. Unsupervised
algorithms such as AutoEncorders and K-Means suffer from
poor performance. This is probably due to the lack of labels
and the fact that they are unable to separate the anomaly
class from the benign class. Dimensionality reduction might
provide better results for both supervised and unsupervised
algorithms, as this might reduce the chance of overfit-
ting. Classifying the data into specific application domains
might yield better results, as data tend to be similar, for
corresponding applications. This might favor unsupervised
algorithms more, as this might help them to distinguish the
benign and anomalous data better.

Integrating both static and dynamic defenses would
provide better security for the container ecosystem. Static
defense can be used to check for preexisting vulnerabilities
within a container image and are addressed accordingly.
Dynamic defense can be used on top of scanning tools, to
look for patterns, analyze historical data, and detect and
stop attacks during the runtime. Combining both static and
dynamic defenses can protect against both existing and
evolving threats with the help of continuous monitoring

and automation. This approach is essential for organizations
attempting to fortify their containerized applications.

Future Directions. In summary, there are several re-
search directions to tackle the limitations of existing ap-
proaches: (1) standardizing best security practices for con-
tainer deployment, e.g. secure configurations, minimizing
packages required, using minimal privileges, employing
function filtering, securing network interface, and ensuring
the integrity of images; (2) improving effectiveness and re-
ducing the delay of scanning tools by utilizing collaborative
learning for real-time vulnerability updates; (3) improving
existing anomaly detection using dynamic approaches by
training and tuning different models with diverse and up-
to-date data; (4) exploring federated learning for anomaly
detection to enhance user data privacy and model efficacy.

8. Conclusion

This paper presents a systematic and comprehensive
study of existing attacks and defense mechanisms for con-
tainers. We point out the advantages and shortcomings of
the existing defenses and evaluate both defense mechanisms
namely Static Scanning and Dynamic Anomaly Detection.
We also contribute new datasets for recent state-of-the-
art attacks to evaluate existing dynamic anomaly detection
models. According to our findings, neither of the defenses
can fully protect containers against state-of-the-art attacks.
Dynamic anomaly detection is the most sought-after defense
technique, as it is the only one that can protect against zero-
day vulnerabilities. However, the nature of an exploit is so
complex, that it is very difficult to implement each specific
attack. In addition, a lack of training data aggravates the
problem further. This led to the creation of simpler defense
mechanisms like scanning tools, but they also have their
shortcomings. This urgently raises the need for further work
to secure container-based applications.
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Appendix A.
Model parameters

Table 6 shows the parameters used for the different
supervised algorithms. The parameters were chosen using
GridSearchCV.

Algorithm (Abbv) Parameters
n estimators=200,

Random Forest (RF) bootstrap=False, class weight=‘None’
max depth=4, max features=‘sqrt’,

min samples leaf=1, min samples split=2
max features=200,

Decision Tree (DT) class weight=None, max depth=None
min samples leaf=1, min samples split=2

AdaBoost (AB) n estimators=200,
algorithm=‘auto’, leaf size=30,

K-Nearest Neighbor (KNN) metric=‘minkowski’,
metric params=None,n neighbors=5,

p=2, weights=‘uniform’
solver=‘adam’, alpha=1e-5,

Multi-Layer Perceptron (MLP) max iter=1000,activation=‘relu’,
hidden layer sizes=(5, 2), random state=1

TABLE 6: Displaying parameters for different algorithms
and their abbreviations
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Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper provides a comprehensive analysis and sys-
tematization of knowledge of security vulnerabilities in
container-based applications, a critical concern given their
reliance on a shared OS kernel. It systematically categorizes
container attacks, assesses current defense mechanisms, and
highlights their limitations. It introduces a comprehensive
evaluation framework using a dataset of 51 real-world vul-
nerabilities and tests various static and dynamic defense
strategies, including anomaly detection methods.

B.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science Pro-
vides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science Pro-
vides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) Important topic: The Systematization of Knowledge
(SoK) on Container Security provides significant
benefits to the research community, considering the
widespread use of containers and the escalating
security threats.

2) The paper offers a detailed and high-quality Sys-
tematization of Knowledge (SoK) container threats,
attack, and defense mechanisms.

3) Comprehensive evaluation framework with new
data

4) The re-evaluation of existing defenses provides
highly useful insights about the pros and cons of
these techniques and suggestions to enhance con-
tainer security.

5) The paper is well-written
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