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Abstract—Poly1305 is a widely-deployed polynomial hash func-
tion. The rationale behind its design was laid out in a series
of papers by Bernstein, the last of which dates back to 2005.
As computer architectures evolved, some of its design features
became less relevant, but implementers found new ways of
exploiting these features to boost its performance. However,
would we still converge to this same design if we started afresh
with today’s computer architectures and applications? To an-
swer this question, we gather and systematize a body of knowl-
edge concerning polynomial hash design and implementation
that is spread across research papers, cryptographic libraries,
and developers’ blogs. We develop a framework to automate
the validation and benchmarking of the ideas that we collect.
This approach leads us to five new candidate designs for poly-
nomial hash functions. Using our framework, we generate and
evaluate different implementations and optimization strategies
for each candidate. We obtain substantial improvements over
Poly1305 in terms of security and performance. Besides laying
out the rationale behind our new designs, our paper serves
as a reference for efficiently implementing polynomial hash
functions, including Poly1305.

1. Introduction

Universal hash functions are among the most fundamen-
tal and versatile tools in cryptography and computer science
more generally. In the former domain, their most impor-
tant application is in constructing Message Authentication
Codes (MACs). In the latter area, they are widely used in
probabilistic data structures. But not all hash functions are
created equal. Choosing the right hash function for a given
application is a challenge for practitioners, who seek the
most efficient design without compromising on security.

Universal hash functions are relatively easy to im-
plement and significantly faster than cryptographic hash
functions. Their security is information-theoretic rather
than computational. Consequently, they retain their secu-
rity against quantum and computationally unbounded ad-
versaries. Classes of universal hash functions are readily
obtained from basic algebraic approaches, such as matrix
multiplication, inner product, and polynomial evaluation.
The class based on polynomial evaluation is prevalent in
practice due to its shorter key sizes and perhaps because it

is easy to understand and implement. We restrict ourselves
to this class here.

To construct a MAC from a universal hash function
generally entails evaluating the hash over the data, and
either feeding the output to a blockcipher, or blinding the
output with a pseudorandom value obtained by enciphering
a nonce with a blockcipher. The former is called the hash-
then-PRF construction. The latter is the Wegman-Carter
MAC construction [1]. It is used in the two most popular
Authenticated Encryption with Associated Data (AEAD)
schemes in use on the Internet today: Galois-Counter-Mode
(AES-GCM) and ChaCha20-Poly1305. These are the default
choices in protocols like TLS, SSH, and Wireguard. Both
constructions (hash-then-PRF and Wegman-Carter) have the
properties that MAC security and performance depends
closely, and in a provable manner, on corresponding prop-
erties of the underlying universal hash function.

On the surface, AES-GCM and ChaCha20-Poly1305
look very similar, but when viewed from the perspective
of an implementer, a number of contrasting features emerge
between the two schemes. At an abstract level, they both
share the same high-level structure combining a nonce-based
streamcipher (AES in Counter mode and ChaCha20) with a
Wegman-Carter MAC instantiated with a polynomial evalu-
ation hash (GHASH and Poly1305). However, the polynomi-
als are instantiated over different finite fields, a binary field
GF(2n) in the case of GHASH and a prime field GF(q) in the
case of Poly1305. As a result, the optimization techniques
applicable to GHASH are very different from those for
Poly1305. In terms of performance, AES-GCM is typically
faster on hardware that natively supports AES instructions
and carry-less multiplication, which are commonly sup-
ported by most 64-bit CPUs today. However, in the absence
of such hardware support, ChaCha20-Poly1305 emerges
as the faster option. In general, it enjoys relatively good
performance across all architectures. Moreover, because it
does not rely on hardware-specific instructions, it is more
portable than AES-GCM, and it has been postulated that
as the level of parallelization on modern CPUs increases,
it might eventually outperform AES-GCM even on CPUs
with native support [2]. Accordingly, ChaCha20-Poly1305
is generally perceived as the one-size-fits-all solution.

It is noteworthy that when ChaCha20-Poly1305 was pro-
posed, AES-GCM was already the dominant AEAD scheme



in use, and yet it managed to gain wide popularity relatively
quickly. This serves to show that there is scope for deploying
new and better cryptography when it becomes available.
Our thesis that if one were to design a replacement for
Poly1305 today, one would end up with a different design.
The two principal reasons, concerning both security and
performance, are that Poly1305 was designed as a stand-
alone primitive, and the characteristics of computer proces-
sors were quite different at the time of its design. While
ChaCha20 and Poly1305 were both designed by Bernstein,
but as independent primitives. In fact, Poly1305 was orig-
inally proposed in combination with AES as a Wegman-
Carter MAC [3]. The two were only combined into an
AEAD scheme later on by Langley [4]. While the two match
rather well in terms of their implementation characteristics,
they have drastically mismatching security levels. ChaCha20
uses 256-bit keys and a block size of 512 bits, whereas the
security of Poly1305 is roughly (103− log2(n)) bits, where
n is the message length measured in 128-bit blocks. This
disparity shows up in the security analysis in [5], where
it was shown that the security of ChaCha20-Poly1305 is
heavily dominated by the security of Poly1305 and that
Poly1305’s security may not suffice in a multi-user setting
with large amounts of data to be protected.

The design of Poly1305 was tailored for 32-bit archi-
tectures and driven by the idea of exploiting the IEEE-
compliant Floating-Point Units (FPUs). A decade later, this
design choice looks unfortunate. Today almost all imple-
mentations of Poly1305 use integer arithmetic because,
on modern processors, this yields better speeds. Enabling
Poly1305 to exploit IEEE-compliant FPUs required that 22
bit positions in its key be clamped (fixed to zero). This had
the side-effect of reducing its security by 22 bits. Interest-
ingly, key clamping can still be exploited (albeit in a differ-
ent way) to gain speed when using integer arithmetic, but
this is incompatible with fully exploiting instruction-level
parallelism—which is likely to be more beneficial in general.
As a result, today, key clamping significantly weakens the
security of Poly1305 without providing an adequate payback
in performance. Furthermore, while its choice of prime
(2130 − 5) works fairly well on 32-bit processors, requiring
five 32-bit words to represent an element in GF(2130 − 5),
one is forced to use three 64-bit words on a 64-bit processor.
This is wasteful of the 192 bits that would otherwise be
available, either to achieve higher speed or higher security.
Given the above, there is a need and an opportunity to design
a new generation of improved polynomial hash functions.
We can aim to achieve better performance for the same
security level, or better security for the same performance
level (measured in cycles per byte), or possibly even strike
a better tradeoff altogether.

There is more than meets the eye to this endeavour. The
design space is fairly broad with multiple interactions that
need to be taken into account. We need to identify and
decide on the type of polynomial, the type of prime, the
size of the prime, the key size, how to encode the key into
a field element, whether to use just one polynomial or a
combination of polynomials, and how to encode messages

onto polynomials. In turn, each design choice affects the
security and performance of the resulting hash function.
The implications on security are rather straightforward to
determine but the same cannot be said about performance.
Each design choice can either make a certain optimiza-
tion technique available to implementers or take it away
from them. Moreover, certain optimization strategies are
incompatible, and their efficacy generally depends on the
targeted processor. Thus identifying the set of design choices
and parameters which meet a certain security level while
enabling the right combination of optimization tricks that
result in the best performance, is a rather complex task.
Furthermore, it is unlikely that there is a single design that
is optimal in every aspect and every use case. To complicate
matters even further, the body of knowledge relating to
these design aspects and optimizations is scattered across
the literature applied to different hash constructions and,
in a number of cases, it exists only as folklore amongst
implementers. This situation calls for an SoK.

1.1. Contributions

Our effort to identify a better alternative to Poly1305
starts by gathering and systematizing the relevant design
choices and optimization techniques to get a clearer picture
of the full design space. We then build a framework to
explore and evaluate this design space and narrow down
suitable candidates. Arguably, the characteristic features of
Poly1305 and its appeal derive, for the most part, from
its simplicity, in employing a plain univariate polynomial,
and the ease of implementing prime-field arithmetic on
generic hardware. Because our focus is to find a suitable
candidates in the same category as Poly1305, we restricted
the scope of our search to univariate polynomials over prime
fields. That said, we do cover optimization techniques that
were proposed in relation to hash functions outside of this
category and adapt them to this setting. Our contributions,
then, are three-fold:

Systematization of Knowledge. We gather and organize
the design aspects relating to the fast implementation of
polynomial hash functions based on the research literature,
open-source software, and some of our own observations.
We classify these into design choices and implementation
choices. The design choices are fixed once and for all
when the hash function is specified in a public document
or standardized. On the other hand implementation choices
can be revised at any point and can be tailored for the
application at hand, taking into account the target hardware,
complexity, and portability. A good design must be informed
by both categories since the design choices shape the choices
available to the implementer, which ultimately determine the
performance of the scheme. Our exposition aims to develop
an understanding of the inter-relationships and tradeoffs
between these aspects. It then serves both to guide the
design of new hash functions in this category as well as to
inform developers on how to best implement them, including
Poly1305 itself. In fact, we do identify novel and performant



implementations of Poly1305 that we did not encounter in
the wild.

Benchmarking Framework. While the above systematiza-
tion serves to lay out the design space and identify com-
patible and conflicting choices, it only tells half the story.
It serves us to make broad and high-level predictions, but
it is difficult to determine precisely how a particular set
of choices and parameters interact on different hardware
and affect the overall performance. For this reason, we
developed a software framework that enables us to quantita-
tively evaluate the insights derived from our systematization.
Our framework provides a configurable implementation of
a polynomial hash function with multiple sub-components
in which we can specify any compatible combination of the
above design and implementation choices and automatically
generate executable code that we can readily benchmark.
More concretely, we can specify the construction’s dimen-
sions, the prime field, how the data and key are encoded
into field elements, the field arithmetic algorithms, and the
evaluation strategy of the polynomial. The source code is
made public so that other researchers can use it, validate it,
and build upon it.

New Hash Function Designs. We propose and experi-
mentally evaluate several new, attractive designs that result
directly from this exploration, accompanied with perfor-
mant implementations generated automatically using our
framework. We target three categories: (a) very high se-
curity (following up on [5]), (b) higher security at the
Poly1305 performance level, and (c) higher performance at
the Poly1305 security level. For the second and third cat-
egories, we offer two alternatives that are fine-tuned either
for 64-bit architectures, or 32-bit and 64-bit architectures
simultaneously. We observe substantial improvement across
all three categories. Moreover, our fully-delayed, two-level
implementation emerges as the overall winner across most
benchmarks.

2. Background

Naming and Notation. The empty string is denoted by ε.
For any positive integer µ, {0, 1}µ, {0, 1}≤µ and {0, 1}∗
denote respectively the set of binary strings of size µ, the
set of binary strings of size less than or equal to µ, and
the set of all finite strings. For any string x, |x| denotes
its size in bits, |x|µ = ⌈|x|/µ⌉ its size in µ-bit blocks, and
x[i:j] its substring spanning bits i to bit j inclusive, where
1 ≤ i < j ≤ |x|. If |x| = 8|x|8, x is said to be a byte
string. For any two strings x and y, x∥y and x⊕ y denote
their concatenation and bitwise XOR respectively. For any
positive integer c such that |x| = |y| = c ·µ, x

µ

+y and x
µ

−y
denote respectively the strings obtained from interpreting
their µ-bit substrings as unsigned integers and adding or
subtracting individually modulo 2µ.

For any finite set S and any positive integer n, |S|
denotes the set’s cardinality, [S]n denotes its n-ary Cartesian
power, [S]∗ denotes the set of all infinite sequences of

elements in S, and y ←$ S denotes the process of sampling
uniformly at random an element from S and assigning it to
y. If x = (x1, · · · , xn) is a finite tuple, then x[i] denotes its
i-th element, i.e., xi, and |x| denotes its size (i.e., n). For any
non-empty string x, x1, . . . , xn

µ←− x denotes its parsing
into µ-bit blocks such that |xi| = µ for all 1 ≤ i ≤ n − 1
and 0 < |xn| ≤ µ. For q a prime power, Fq denotes the
finite field of order q and F∗q denotes Fq \ {0}. Our focus
here is on prime fields (q prime) and binary fields (q a power
of two). We construct prime fields via the integers modulo
q and the corresponding arithmetic operations, which we
denote by Zq. Then for any x ∈ {0, 1}≤⌊log2(q)⌋, its natural
mapping into Zq as an unsigned integer is denoted by [x] q.

In reference to computation on a processor, ω is an
integer denoting the processor’s word size in bits. Then
representing an integer a ∈ Zq where log2(q) ≤ ω · ℓ bits,
requires at most ℓ ω-bit integers. We call one such ω-bit
integer a limb and say that ℓ limbs are required to represent
a. For two sequences {aj} and {bk}, we denote the sum of
products over all index pairs where the predicate P (j, k) is
true for 0 ≤ j < l1 and 0 ≤ k < l2, as:

∑
l1:l2:P (j,k)

ajbk .

2.1. Universal Hash Functions

Universal hash functions are keyed hash functions whose
security properties are quantified through a parameter ϵ. We
next present the formal definitions, explain how a universal
hash function can be transformed into a MAC, and how the
security of the resulting MAC relates to hash parameter ϵ.
All hash functions are assumed to be deterministic.

Definition 1 (Universal Hash Functions). Let H : R×M→
T be a keyed hash function with key space R, domain M
and digest space T . We say that H is ϵ-almost universal if
there exists a function ϵ :M×M→ [0, 1] such that for all
distinct inputs M,M ′ ∈M, it holds that

Prr←$R[Hr(M) = Hr(M
′)] ≤ ϵ(M,M ′) .

Intuitively the universality property is a weak form of
collision resistance where the key is secret and sampled
independently of the message pair. A stronger notion, known
as ∆-universality, generalizes this property further.

Definition 2 (∆-Universal Hash Functions). Let H : R ×
M → T be a keyed hash function with key space R,
domain M and digest space T where (T ,+) is an abelian
group. We say that H is ϵ-almost ∆-universal if there exists
a function ϵ : M×M → [0, 1] such that for all distinct
inputs M,M ′ ∈M, and all z ∈ T it holds that

Prr←$R[Hr(M) = Hr(M
′) + z] ≤ ϵ(M,M ′) .

Fixing z to be the group’s identity element reduces the
above notion to that of a universal hash function. When
the abelian group (T ,+) is ({0, 1}τ ,⊕), the hash function
is also said to be almost XOR-universal (AXU). Other
examples of concrete group instantiations are (Fq,+) and
({0, 1}τ ,

τ

+). When ϵ(M,M ′) is equal to |T |−1 for all



distinct M,M ′ ∈ M, H is said to be universal (resp. ∆-
universal). When M = [S]n for some finite set S and fixed
positive integer n we say that H is a fixed-input-length hash;
if M = [S]∗ we say that H is a variable-input-length hash.

Wegman-Carter MAC. An ϵ-almost ∆-universal hash
function can be combined with a pseudorandom func-
tion via the Wegman-Carter construction to yield a nonce-
based MAC [6]. Namely, for a ∆-universal hash func-
tion H : R × M → T and a pseudorandom function
F : K ×N → T , the corresponding Wegman-Carter MAC
is defined as: MAC((r, k), N,M) = H(r,M)+F (k,N). A
key benefit of this construction is its efficiency: the message
only needs to be processed by the ∆-universal hash function;
this is typically much faster than MAC constructions based
on blockciphers or cryptographic hash functions. Here the
pseudorandom function is only evaluated over a short nonce
N , whose output serves to blind the hash output. This is
essentially the MAC construction employed in GCM where
the ϵ-almost ∆-universal hash is instantiated with GHASH
and the pseudorandom function is instantiated with a single
AES evaluation. ChaCha20-Poly1305 uses a variation of
this construction where, in addition to deriving a blind-
ing value sm the pseudorandom function is also used to
derive a one-time hash key r for every nonce. That is,
MAC(k,N,M) = H(r,M)+s where (r, s) = F (k,N) and
F is instantiated with the ChaCha20 block function. Various
security analyses exist for such constructions, which in turn
depend on the exact instantiation and security model being
considered. Without delving too much into the details, a
typical security bound for these MAC constructions is of
the form δprf + q2a/|N | + ϵ · qv where δprf denotes the
probability of distinguishing F from a random function,
qa and qv denote respectively the number of authenticated
messages and the number of forgery attempts, and ϵ is an
upper bound on ϵ(M,M ′) for some maximum message size.

2.2. Composition

The following theorem establishes the security of com-
posing two universal hash functions, extending a classical
result by Stinson [7] to ∆-universality while deriving a
sharper bound. Composing universal hash functions can be
done for multiple reasons: to transform a universal hash into
a ∆-universal one, to compress the output of a universal hash
as in UMAC [8], for domain extension as in XPoly [9], or for
“ramping-up”1 as in PolyR [10]. The proof of the theorem
is in the full version.

Theorem 1 (Composing AU with A(∆)U). Consider two
keyed hash functions H1 : R1 ×M1 → T1 and H2 : R2 ×
(M2 × T1) → T2 that are respectively ϵ1-almost universal
and ϵ2-almost (∆-)universal. Their composition is given by

H((r1, r2), (M1,M2)) = H2(r2, (M2, H1(r1,M1))) .

1. This technique consists of processing short messages with a fast hash
and, as the message gets longer, composing it with a slower hash that has
a better maximum message length / key size ratio.

Further let ϵ3(·, ·) be such that for all distinct M2,M
′
2 ∈

M2 and distinct T, T ′ ∈ T1, ϵ3((M2, ·), (M ′2, ·)) = 0 and

Prr2←$R2 [H2(r2, (M2, T ))=H2(r2, (M2, T
′))]

≤ ϵ3((M2, T ), (M2, T
′)) .

Then H is ϵ-almost (∆-)universal where

ϵ((M1,M2), (M
′
1,M

′
2)) =

max
r1∈R1

(
ϵ2(H1, H1

′
), ϵ1(M1,M

′
1)+ϵ3(H1, H1

′
)
)
,

H1 = (M2, H1(r1,M1)), and H1
′
= (M ′2, H1(r1,M

′
1)).

The above theorem holds both for the case when H2

is universal or ∆-universal. As for the bound, note that
ϵ3(H1, H1

′
) ≤ ϵ2(H1, H1

′
) always. In some cases, as in

the composition theorem of XPoly and PolyR, ϵ3 is much
smaller than ϵ2, resulting in a bound max(ϵ2, ϵ1 + ϵ3) that
is better than the classical bound ϵ1 + ϵ2 for composition.
As injective functions are a special kind of universal hash
function, injective domain and tag transformations can be
handled as a straightforward application of this theorem.

Auxiliary Background Material. Additional background
material on processor architecture can be found in App. A.
We refer to [3] for details of the design of Poly1305.

3. Polynomial Hash Design and Optimization

We distinguish the factors and strategies affecting the
performance of a polynomial hash function by classifying
them as either design choices or implementation choices.

3.1. Design Choices

Designing a polynomial hash function reduces to making
three design choices: choosing a type of polynomial, choos-
ing the finite field over which the polynomial is evaluated,
and choosing how bit strings—the required format for the
input/output of a hash function—are encoded as field ele-
ments and vice versa. Although we list these as separate
choices they are certainly not independent of each other. As
a result, picking the seemingly best option for each does not
necessarily result in the best combination overall.

3.1.1. Choice of Polynomial Construction. The first aspect
we consider is how to choose a polynomial hash function
and construct the core of a universal hash function from it.

Many types of polynomials can be considered to con-
struct a universal hash function; each has different charac-
teristics in terms of security bound and efficiency of their
evaluation algorithm. The multivariate polynomials MMH∗

and NMH∗ from Halevi et al. [11] have the significant
drawback that they require a key of the same length as the
message. This hinders their efficiency for longer messages,
and so they are excluded from further consideration here. A
more efficient choice is the classical univariate polynomial.



It was introduced independently by den Boer [12], by Jo-
hansson, Kabatianskii and Smeets [13], and by Taylor [14].
It is the basis for most modern polynomial hash functions
such as Poly1305 [3], GHASH [15] and POLYVAL [16].
Later, efficient univariate polynomials based on the BRW
polynomial from [17] were introduced [18], [19], [20].

All these univariate polynomial hash functions share a
common feature: they obtain their universality property from
their injectivity and maximum degree. We formalize this
observation in Thm. 2. The theorem, which is a reformula-
tion of an idea from Bernstein [17, Section 5.7] and whose
proof can be found in the full version, gives simplified
conditions that a univariate polynomial needs to satisfy to
be a universal hash function. Thus, choosing a suitable
polynomial on which to build a universal hash function often
reduces to choosing a polynomial satisfying the conditions
from Thm. 2 and ensuring that it has an efficient evaluation
algorithm.

Theorem 2 (Universality of Polynomial Hash). Let Px :
M → Fq[x] be an injective function over the domain M
such that for any M,M ′ ∈ M, Px(M) − Px(M

′) is a
univariate polynomial in the indeterminate x of degree at
most d(M,M ′). Then the keyed hash function H : Fq ×
M→ Fq defined as H(r,M) = Pr(M) (i.e. by evaluating
the polynomial Px(M) at x = r) is ϵ-almost universal with
ϵ(M,M ′) = d(M,M ′)

q . Additionally, if the function Gx :
M → Fq[x] defined by Gx(M) = Px(M) − P0(M) is
injective, then H is ϵ-almost ∆-universal.

Notably, the theorem states that when Px is injective
with a constant coefficient of zero, then H is also a ∆-
universal hash function. The domain M will be very often
a subset of [Fq]

∗. In this case, the degree of Px(M) will de-
pend on the tuple size of its input M . Thus, the complexity
of the evaluation algorithm of H in terms of field element
operations will also depend on this tuple size. We call any
hash function that satisfies Thm. 2 a polynomial universal
hash function over the finite field Fq.

Classical Polynomial. The classical polynomial is the sim-
plest possible choice of polynomial for constructing a uni-
versal hash function. A univariate polynomial with indeter-
minate x and coefficients M1, · · · ,Mn can be constructed
as M1 + M2 · x + M3 · x2 + · · · + Mn · xn−1. However,
this formulation cannot be evaluated in an online fashion
using Horner’s algorithm if M1 is the first available message
block. Accordingly, we will use the prevalent formulation
where the message-block ordering is reversed, yielding:
Hpoly(r,M) = M1 ·rn−1+M2 ·rn−2+· · ·+Mn−1 ·r1+Mn.
We cover the different evaluation strategies for this hash
function, including Horner’s algorithm, in Sec. 3.2.4. By
Thm. 2, we can enforce structure on the domainM in order
to tune this construction to handle variable input lengths and
attain the desired level of universality. The exact mapping
of a message onto Hpoly depends on the choice of data-
to-field encoding (cf. Sec. 3.1.2), which in turn depends
on the specific choice of finite field. Yet, assuming an
injective data-to-field encoding, fixing M1 to be non-zero

M Universality Type ϵ(M,M ′)

[Fq ]n ϵ-almost universal n−1
q

F∗
q × [Fq ]∗ ϵ-almost universal

max(|M|,|M′|)−1

q

[Fq ]n × {0} ϵ-almost ∆-universal n
q

F∗
q × [Fq ]∗ × {0} ϵ-almost ∆-universal

max(|M|,|M′|)−1

q

TABLE 1: Universality properties of the classical polyno-
mial Hpoly for different domains M.

allows Hpoly to be (∆-)universal over a variable number
of message blocks, and fixing the constant term be zero
guarantees that Hpoly achieves the stronger ∆-universality
property. If M1 is allowed to be zero, then Hpoly is only
universal over a domain of some fixed number of message
blocks n. These choices are summarised in Tab. 1. The last
option shown there is a popular choice in practice. It is used
in Poly1305 as well as our newly proposed designs.

We will focus on the classical polynomial as it is sim-
ple and general enough to present the main optimizations
available to polynomial universal hash function over finite
fields. Most of these optimizations extend to other types of
polynomials. The study of other types of polynomials (such
as the BRW polynomials) is left to future work.

Transforming Polynomial Hash Functions. Once a poly-
nomial is chosen, it might only have some of the properties
we desire for our hash function. It might not be secure
enough, not be ∆-universal, its domain too small, etc. In that
case we might be able to apply some efficient transforma-
tions to obtain the desired properties. App. B lists possible
transformations and how they affect security and efficiency.

3.1.2. Choice of Encodings. The polynomial universal hash
functions we described in Sec. 3.1.1 are all based on poly-
nomials over a finite field Fq, and as such, their key space,
digest space and often their domain, are cartesian products
of this finite field. In practice, however, messages, keys, and
tags are bit strings. We next show how to convert bit string
messages and keys into finite field elements and convert tags
that are finite field elements into bit strings.

Field-to-Tag Encoding. It is possible to convert an almost
universal or ∆-universal hash function H : R ×M → Fq

into a hash function with a tag space {0, 1}τ by identifying
a suitable transform function Tr : Fq → {0, 1}τ to com-
pose it with. If the function H is only ϵ-almost universal,
according to Thm. 1, it is possible to transform it into a
universal hash function with a tag space {0, 1}τ of size
2τ ≥ q by composing it with such an injective transform
function Tr. Then, the composed function Tr ◦H stays ϵ-
almost universal. When Fq is a prime field, such an injective
function can be defined by identifying Fq with the set of
integers {0, · · · , q − 1} and then mapping such integers to
bit strings of length τ .

If the function H is also a ∆-universal hash function,
we can use Prop. 1 below to perform a modulus switch from



a prime field Zq to the group Z2τ and then naturally encode
elements from Z2τ in {0, 1}τ . The proposition and its proof
(deferred to the full version), reformulate the technique
used for MMH and Poly1305 to obtain a ∆-universal hash
function over bit strings.

Proposition 1 (Modulus Switching for A∆U Hash Func-
tion). Let H : R × M → Zn be a family of keyed
hash functions and Tr : Zn → Zm denote the function
Tr(x) = x (mod m). Define the family of keyed hash func-
tions H ′ : R×M→ Zm as H ′(r,M) = Tr(H(r,M)). If
H is ϵ-almost ∆-universal, then H ′ is ϵ′-almost ∆-universal
with ϵ′(M,M ′) =

(⌊
2n−2
m

⌋
+ 1
)
· ϵ(M,M ′).

Note that when n ≤ m, Tr is an injection from Zn to
Zm that does not require any computation. When n > m
and m = 2τ , Tr(x) = x (mod m) can be efficiently
implemented as the truncation of the highest bits of the
binary representation of the integer x. If n < m

2 +1, there is
no security loss when switching modulus in the proposition.

To summarize, when composing with a transform func-
tion Tr : Fq → {0, 1}τ , there is almost always no security
loss and computational overhead when q ≤ 2τ . When
q > 2τ , the bigger q is, the more significant the security
loss with negligible computational overhead. Thus, the tag
size τ needs to be chosen according to an acceptable tag
size/security tradeoff.

Key-to-Field Encoding. According to Prop. 2 below, to
transform an almost universal or ∆-universal hash H : Fq×
M → T into a hash function with a key space {0, 1}ρ, it
suffices to compose a transform function Tr : {0, 1}ρ → Fq

with H . When given random strings as input and compared
to a uniform distribution, the larger the bias in the distribu-
tion of the outputs of Tr is, the more significant the security
loss of the composed construction. The proof can be found
in the full version.

Proposition 2 (Key Space Transformation of AU or A∆U).
Let H : R×M→ T be an ϵ-almost universal hash function
(resp. ϵ-almost ∆-universal hash function) and Tr : R′ →
R be a function satisfying Prr′←$R′ [Tr(r′) = r] ≤ N for
all r ∈ R. Consider the family of keyed hash functions
H ′ : R′×M→ T defined by H ′(r′,M) = H(Tr(r′),M)
for all r′ ∈ R′ and M ∈M. Then H ′ is ϵ′-almost universal
(resp. ϵ′-almost ∆-universal) with ϵ′(M,M ′) = N · |R| ·
ϵ(M,M ′).

Note that when Tr is an injective function, then one
can choose N = |R′|−1 in the above proposition, thereby
preserving the value of ϵ.

Defining Tr(r) as the integer representation of the
⌊log2(q)⌋-bit string r[1:min(ρ, ⌊log2(q)⌋)]∥0∗ leads to the
smallest security loss of q · 2−min(ρ,⌊log2(q)⌋), which is less
than 2 when 2ρ > q. This is proved in the full version. We
now describe two choices of key-to-field encoding which
imply different tradeoffs between security and efficiency:
key size reduction and key format restriction.
Key Size Reduction. As the efficiency of field arithmetic
decreases with the number of limbs (cf. Sec. 3.2.2), mapping

to a bit string with a smaller number of limbs is better. To
increase the efficiency of a polynomial hash function, we
might want to reduce the key size from ρ bits to a smaller ρ
bits with 2ρ ≤ q and use an injective key transform function
Tr : {0, 1}ρ → Fq that encodes elements of Fq with fewer
limbs. According to Prop. 2, the security loss factor of such
a transform is q · 2−ρ. However, this approach would only
lead to a performance improvement when the evaluation
algorithm of the polynomial hash function involves multiple
multiplications with the key.
Key Format Restriction. In a prime field Zq, multiplying a
field element with another one of a particular format can be
more efficient than multiplying two general field elements.
Examples of polynomial universal hash functions that use
key format restrictions are PolyR and Poly1305. We discuss
one particular key format, key clamping, in detail in Sec. 3.3.
Another format based on bit shifting is described in the full
version. Both techniques have a security loss factor of at
most q · 2−min(ρ,⌊log2(q)⌋)+b, where b is the number of bits
required to be zero per limb.

In a nutshell, specifying a polynomial universal hash
function over a prime field with a key space of reduced
size or restricted format has one main advantage: speed.
This advantage comes, however, with several drawbacks.
The first one is the security decrease that may be substantial
compared to the same polynomial without key restrictions.
The second drawback is the limited range of implementation
choices that can exploit the restrictions for performance. In-
deed, for the classical polynomial, only Horner’s algorithm
would benefit from them. Other evaluation algorithms (de-
scribed in Sec. 3.2.4) of the classical polynomial would not,
as they use multiplication by a power of the key and not only
multiplication by the key itself. Moreover, for key format
restrictions, only the Schoolbook multiplication algorithm
in a specific radix representation would show performance
gains. Key size reductions and key format restrictions are
thus design choices that would benefit primarily only spe-
cific types of hardware.

Data-to-Field Encoding. The goal of this encoding is to
transform the domain of the polynomial hash from a tuple
of field elements to a string. Thm. 1 says that if we compose
an ϵ-almost universal hash function with domain M with
an injective function Inj : M′ → M we obtain an ϵ′-
almost universal hash function over the domain M′ where
ϵ′(M,M ′) = ϵ(Inj(M), Inj(M ′)). Thus, from a universal
hash function over Fn

q , we can construct a fixed-input-
length universal hash function over the domain {0, 1}η,
where 2η ≤ n · q. Alternatively, from a universal hash
function over [Fq]

∗, we can construct a variable-input-length
universal Inj : {0, 1}∗ → [Fq]

∗ hash function over {0, 1}∗.
Assuming we have settled on a specific finite field, we want
to find an injective encoding that minimises the number of
output field elements for any input string of a given length.
More field elements imply a polynomial of higher degree,
meaning that more arithmetic operations will be required for
its evaluation (cf. Sec. 3.2.4 for the classical polynomial). It
also means worse security, since the security bound of the



classical polynomial hash depends on its maximum degree
(cf. Thm. 2, and Tab. 1 for the classical polynomial).

Let us first consider the case of fixed-length messages.
For this we only need to parse a message M ∈ {0, 1}η in
blocks of size µ ≤ ⌊log2(q)⌋ as M1, . . . ,M⌈ η

µ⌉
µ←− M ,

and then encode them as field elements, that is,

Inj(M) = [M1] q, [M2] q, . . . , [M⌈ η
µ⌉] q .

The most space-efficient choice is to choose a block size of
µ = ⌊log2(q)⌋. However, when µ is not a multiple of the
word size ω or not a multiple of 8, the blocks Mi will not be
word- or byte-aligned, resulting in slower memory access.
As a general rule, a block size that is a multiple of ω typ-
ically results in the speediest memory access. On the other
hand, when the biggest multiple of ω less than or equal to
⌊log2(q)⌋ is much smaller than ⌊log2(q)⌋, the message will
be mapped onto a larger tuple of field elements, resulting in
a slower evaluation of the polynomial hash function. In such
a case, it is typically better to opt for a blocksize equal to
the largest multiple of 8 less than or equal to ⌊log2(q)⌋, as
the overhead in computation will outweigh the degradation
in memory access.

Although not very common, it is worth mentioning two
techniques from [10] which permit the use of a block
size where µ = ω ·

(⌊
log2(q) · ω−1

⌋
+ 1
)

> ⌊log2(q)⌋.
One technique uses the DoubleTransform, where in-range
blocks are encoded as single field elements and out-of-range
block are mapped onto two field elements. The underlying
assumption is that random data out-of-range blocks should
be infrequent. A disadvantage of this encoding is that it is
more complex to parse, and the data may not be random.
The second approach employs a non-injective randomised
encoding through the use of an auxiliary random value. As
this encoding is non-injective it requires a separate security
analysis.

In order to adapt the classical polynomial to handle
variable-length messages we have two main approaches
depending on what structure is already imposed on its
domain. As already noted in Sec. 3.1.1, if the highest-
degree coefficient is restricted to be a non-zero field element
then the classical polynomial is (∆-)universal over tuples
of variable number of field elements. One way to realise
this is to set the highest degree coefficient to a constant
field element and embed message blocks in the remaining
coefficients. In that case we only need to ensure that our
encoding is injective, especially over strings of different
lengths that map to the same number of field elements. One
such injective encoding is the stop-bit encoding, where the
message is parsed into blocks of size µ ≤ ⌊log2(q)⌋ where
only the last block is allowed to be shorter than µ, prepend
the last block with a ‘1’ as a marker and translate every
block into a field element. When µ + 1 ≤ ⌊log2(q)⌋, this
approach can be applied directly as follows

Inj(M) = [M1] q, . . . , [M⌈ |M|
µ ⌉−1] q, [1∥M⌈ |M|

µ ⌉] q

If on the other hand µ = ⌊log2(q)⌋, Inj(M) needs to be
redefined as

=

{
[M1] q, . . . , [M⌈ |M|

µ ⌉] q, 1 if µ divides |M |
[M1] q, . . ., [M⌈ |M|

µ ⌉−1] q, [1∥M⌈ |M|
µ ⌉] q otherwise

When the domain of the polynomial is of the form
[Fq]

∗×{0} or [Fq]
∗ we can still adapt it to handle variable-

length messages through a suitable choice of encoding. For
the case where µ + 1 ≤ ⌊log2(q)⌋ we can extend the prior
approach by prepending a ‘1’ bit to every block, i.e.

Inj(M) = [1∥M1] q, . . . , [1∥M⌈ |M|
µ ⌉−1] q, [1∥M⌈ |M|

µ ⌉] q, 0 .

Note that the above encoding sets the highest-degree coeffi-
cient to be non-zero while simultaneously padding the last
block in an injective way. Indeed this is the encoding used in
Poly1305. Alternatively if µ=⌊log2(q)⌋ we can pad the last
block with zeros and append a block containing the length
of the message as follows

Inj(M) = [M1] q, . . . , [M⌈ |M|
µ ⌉∥0

∗] q, [|M |] q .

Similarly to the case of key-to-field encoding, we can
employ block size restriction (i.e., use a smaller µ) and block
format restriction in order to speed up field multiplication.
To the best of our knowledge, we are the first to propose
this optimisation. The performance benefits are restricted
to specific implementation choices, such as the two-level
implementation of the classical polynomial (cf. Sec. 3.2.4).
However, the security/efficiency tradeoff at play here differs
from that for key size reduction and key format restriction.
The performance gain is hindered by the lower data process-
ing rate (i.e. a data tuple of bigger size). On the other hand,
the security decrease is less significant as it is only linear
compared to the exponential degradation resulting from key
size reduction and key format restriction. This is due to
the security bound d(M,M ′)

q · q
2ρ of Thm. 2 combined with

Prop. 2, which is inversely proportional to the block size
and an exponential term in the key size.

As evidenced from the above discussion, the central
parameter of the injective encoding affecting the efficiency
and security of the hash is the block size µ which must be
chosen in accordance with the word size ω and the field size
q, which we discuss next.

3.1.3. Choice of Finite Fields. The polynomial universal
hash functions constructed in Secs. 3.1.1 and 3.1.2 are
defined over one or multiple finite fields Fq. The format and
size of q determine the computational aspects of the field
Fq, and in turn the security and efficiency of the polynomial
hash function.

Format of q. A random prime q does not typically yield
efficient arithmetic in Zq. While integer additions and multi-
plications are straightforward operations, modular reduction
by a random prime is costly. Montgomery reduction [21] is
the standard modular reduction algorithm used when dealing
with generic moduli. However, more straightforward and



efficient modular reduction algorithms are known for special
primes such as Mersenne primes of format q = 2π−1, Cran-
dall primes [22] of format q = 2π − θ (for small θ), primes
used in MMH and Square Hash of format q = 2π + θ,
and Solinas primes [23] of format q = 2m·d−

∑d−1
i=0 ci2

i·m

where m is in general a multiple of the word size ω. For
Crandall and 2π + θ primes, the choice of θ affects the
efficiency of the modular reduction. It is usually chosen
small, and such that multiplication by θ can be implemented
efficiently (e.g. when θ is close to a small power of 2).
Handling primes of the type 2π + θ is more complex than
Crandall primes. Regarding their efficiency, at the same size,
Mersenne primes have a faster reduction algorithm than
Crandall and 2π + θ primes, which are themselves faster
than Solinas primes. However, in terms of scarcity, the order
is inverted. Notably, there are only twelve Mersenne primes
less than 2512, limiting the flexibility in choosing them. We
give detailed implementation algorithms for Mersenne and
Crandall prime arithmetic in Sec. 3.2.2, giving conditions for
when θ is small enough to prevent overflow during modular
multiplication. Modular reduction with Crandall and 2π + θ
primes is slower than Mersenne primes due to the need for
additional multiplications by θ. Yet, for polynomial eval-
uation algorithms that use several modular multiplications
(simultaneous multiplication and modular reduction) by the
same operand, most of these multiplications by θ can be
computed only once and reused across the same operand,
reducing the efficiency advantage of Mersenne primes for
these polynomials. Most of the classical polynomial evalua-
tion algorithms over Crandall prime fields can benefit from
this trick. However, the benefit is smaller when a Solinas
prime field is selected.

To summarize, for a specific prime size π, one would
usually choose in order of preference a Mersenne, a Cran-
dall, a 2π + θ or a Solinas prime, depending on their exis-
tence. The performance loss from one type of prime to the
next can be small depending on the polynomial evaluation
algorithm. When this performance loss is non-negligible, it
might sometimes be preferable to choose a different prime
size π for which there exists a better prime. However, as we
will now describe, a different prime size π also comes with
additional security/efficiency concerns.

Size of q. As already discussed in previous sections, the size
of q (i.e. log2(q)) directly affects the security and efficiency
of polynomial constructions over Fq. Regarding security,
polynomials defined over larger fields Fq usually provide
better security—a property inherited from Thm. 2 which
applies to all polynomial hash functions. However, this is
not universally true as the choice of encoding for the key,
data message and tag can degrade security (cf. Sec. 3.1.2).
It is impossible for a univariate polynomial hash function to
obtain better security than the tag size τ and the key size ρ.
Reducing security through a particular choice of encoding is
typically done to reduce randomness requirements, improve
efficiency, or reduce bandwidth/storage consumption.

The efficiency of polynomial evaluation algorithms of-
ten depends on the tuple size of the data input and the

efficiency of field additions and field multiplications (cf.
Sec. 3.2.4). Specifically, the number of field additions and
multiplications is linear in this tuple size. The tuple size
is usually smaller for bigger fields, as bigger fields allow
encoding more data in a single field element through a
bigger block size µ (cf. Sec. 3.1.2). Specifically, a message
of η bits is usually encoded in a tuple of length

⌈
η · µ−1

⌉
.

Thus, for polynomial evaluation algorithms, bigger fields Fq

often mean fewer field operations. However, it is shown in
Sec. 3.2.1 that bigger fields Fq also increase the number
of limbs ℓ required to represent a field element and in
Sec. 3.2.2, that the complexity of a finite field multiplication
in terms of machine instructions increases quadratically with
ℓ. Therefore, an increase in the size q often results in a
polynomial evaluation with fewer field operations, but for
which the field operations are more costly in terms of
machine instructions. Overall, this results in a decrease in
performance as both µ and ℓ are usually proportional to
log2(q) and the number of machine instructions is propor-
tional to

⌈
η · µ−1

⌉
· ℓ2. Choosing a value of log2(q) that is

optimized to reduce the number of limbs ℓ (or cost of field
operations) seems to be more worthwhile than increasing the
block size µ. Then, for a specific range of security levels,
a good tradeoff choice for log2(q) is often to choose the
largest one in the range with the smallest number of limbs.

We now consider more fine-grained aspects concerning
the size of q. For efficient memory access, the parsing block
size µ is ideally chosen to be a multiple of the word size,
or less ideally a multiple of 8, and µ ≤ ⌊log2(q)⌋ (cf.
Sec. 3.1.2). Since the efficiency of prime field arithmetic
decreases with log2(q), for a fixed µ, choosing the smallest
value of ⌊log2(q)⌋ bigger than µ seems to be a good choice
to increase efficiency. Thus, choosing the smallest ⌊log2(q)⌋
slightly bigger than a multiple of the word size or of 8 seems
to be, in general, a good design choice to ensure efficient
memory access. To uniquely represent an element of Fq with
ℓ limbs of at most λ bits, we need ⌈log2(q)⌉ ≤ ℓ ·λ ≤ ℓ ·ω.
How to make good choices for ℓ and λ is explained in
Sec. 3.2.1. Since the efficiency of prime field arithmetic
depends on ℓ, for fixed values of ℓ and λ, choosing the
biggest ⌈log2(q)⌉ less than ℓ · λ is good for increasing
security without losing efficiency. Thus, selecting the biggest
⌈log2(q)⌉ smaller or equal to a multiple of λ (and of ω)
is also, in general, an advisable design choice to ensure a
good security/efficiency tradeoff. To obtain an even better
balanced representation, we need to choose ⌈log2(q)⌉ to be
precisely a multiple of λ. There is a notably different optimal
choice of ⌈log2(q)⌉ depending on whether we optimize for
implementations using saturated (i.e. λ = ω) or unsaturated
limb representations.

On some architectures, increasing the number of ma-
chine instructions can result in code of the same perfor-
mance due to the ability of processors to process similar
independent instructions in parallel (cf. App. A.1). In the
case of finite field operations, increasing the size of q may
result in an increase in the number of similar independent
instructions (cf. Sec. 3.2.2) with the runtime of each field
operation staying the same, at the same time producing



a polynomial evaluation requiring fewer field operations
overall. This would result in a universal hash function
with better security and improved efficiency. In the case
of the classical polynomial, it is possible to use evaluation
algorithms that leverage this parallel instruction capability
without increasing the size of q (cf. Sec. 3.2.4).

3.2. Implementation Choices

3.2.1. Field-to-Limb Encoding. For prime fields, we gen-
erally represent the field elements by simply treating them
as natural numbers and then use the usual ways to represent
natural numbers. More precisely, let B ∈ N be some base
and a an n-digit number in base B. That is, a can be
represented as

∑ℓ−1
i=0 aiB

i, with ai < B. In practice, our B
is usually a power of two less or equal to 2ω. Each integer
ai is called a limb, and ℓ is the number of limbs of a.

The types of encoding of field elements to integer limbs
can then be classified based on two independent parameters.
The encoding can be saturated, meaning that all bits in
the integer limbs are used to uniquely represent a field
element, or unsaturated, where we use strictly less than ω
bits for each limb to represent each field element uniquely.
Furthermore, the encoding can be balanced, meaning the
unique representation uses the same number of bits in every
limb, or unbalanced, where the number of bits per limb used
in the unique representation varies per limb.

Saturated Representation. In a saturated representation,
we have B = 2ω. To implement a saturated representation,
we have to take care of carries that may occur during ad-
ditions (including the additions required in a multiplication
as discussed in Sec. 3.2.2). This can be implemented most
efficiently when the target processor architecture provides
an add-with-carry instruction (see App. A.1), which is the
case on modern x86 and Arm architectures.

In general, a saturated representation introduces sequen-
tial dependencies between the additions since the carry
status of the n-th addition is required as input for the n+1-
th addition. This can significantly reduce processor pipeline
utilization and, thus, overall processor utilization. On Mod-
ern x86-64 processors, we can instead use the ADCX and
ADOX instructions, as done by [20]. This allows for two
parallel carry chains and thus increases utilization. To our
knowledge, this instruction is not yet automatically used by
non-specialized compilers and, therefore, requires manual
assembly programming.

Unsaturated Representation. In an unsaturated represen-
tation, our basis consists of a set of Bi = 2λi with λi < ω.
When the λi are chosen properly, this allows field-level
addition and multiplication without handling any interme-
diate carries and only carrying all bits once at the end,
since up-to ω − λi bits of carry can be stored in the i-
th limb. Since this approach does not rely on the processor
status flags, it removes most dependencies between most of
the instructions and replaces them with one carry chain at
the end. This can significantly increase processor pipeline

utilization. However, accumulating carry bits leads to a non-
unique intermediate representation of field elements. For
polynomial hashing, this does not pose any issue.

The downside of this approach is that it potentially
increases the number of limbs and therefore, the cost of both
multiplication and addition (as is evident from the discussion
of field arithmetic below). Furthermore, the increased num-
ber of limbs, especially on 32-bit architectures, increases
the likelihood of register spill,2 as we not only need more
registers due to the reduced word size, but also often have
fewer registers to work with on 32-bit architectures.

(Un-)Balanced Representations. In full generality, unbal-
anced representations can have different values of λi for
each limb. In practice, it is usually only the most significant
limb whose bit length differs from the other limbs. An
unbalanced representation comes with slight performance
drawbacks, e.g. fast modular reduction tricks during multi-
plication usually require multiplication by additional factors
(and thus more free limb space) when an unbalanced rep-
resentation is used. This can be observed from eq. (6) as
discussed below. In a saturated representation, the choice
between a balanced and unbalanced representation is im-
plicitly made as part of the design once the field size is
chosen, since a balanced saturated representation is possible
if and only if the wordsize of the CPU evenly divides the
field size. When using an unsaturated representation, this
opens up a tradeoff. Ideally, the field size is chosen to
allow for a balanced representation using a minimal number
of limbs on a wide number of target CPU architectures.
When this is not done, a balanced representation can require
many more limbs than an unbalanced representation. Since
the complexity of multiplication depends on the number of
limbs (as discussed in Sec. 3.2.2 below), this increase in
limb count is usually not worth the slightly reduced cost of
reduction and implementation complexity.

Summarizing all options, to uniquely represent an el-
ement of Zq with ℓ limbs of at most λ bits, we need
⌈log2(q)⌉ ≤ ℓ · λ with λ ≤ ω. For a fixed λ, the smallest
choice for ℓ is

⌈
log2(q) · λ−1

⌉
. Thus, choosing the biggest

λ less or equal to ω seems to be a good choice to reduce the
number of limbs and increase efficiency without decreasing
security. However, for Crandall prime fields, when λ is too
close to ω, it is not possible to do delayed carry propagation
(cf. Sec. 3.2.3) with this representation. If delayed carry is
unnecessary, then λ = ω (i.e. saturated representation) is the
best choice to obtain the smallest number of limbs. There is
no difference in the number of limbs between saturated and
unsaturated representation when ⌈log2(q)⌉

⌈log2(q)·ω−1⌉ ≤ λ. Tab. 2
shows how large the results of Schoolbook multiplication
can become, as a function of the limb index. If delayed
carry is necessary, the biggest λ for which the bound in
Tab. 2 are smaller than 22ω (so that there is no overflow)
when evaluated with the pair (λ, ℓ) = (λ,

⌈
log2(q) · λ−1

⌉
),

gives the smallest number of limbs necessary for delayed

2. Register spill denotes the process when a computation needs more
registers to store its working data and thus has to store it in memory instead.



carry. For such a λ, a more balanced representation with
this same smallest number of limbs is then obtained using
the base B = 2λ, where λ =

⌈
log2(q)

⌈log2(q)·λ−1⌉

⌉
.

3.2.2. Prime Field Arithmetic. This section describes the
main implementation strategies of prime field operations
used in evaluating a polynomial hash function.

Addition. In an unsaturated representation, addition can
usually be implemented by simply adding the limbs since
any potential overflow bits can be stored in the unused
upper bits. This enables individual additions to be computed
in parallel, increasing the likelihood of fully filling CPU
pipelines. Given λ bits per ω limb, we can do 2ω−λ − 1
additions before we need to do a carry propagation.

A saturated representation does not allow this delay and
so requires the use of Add-With-Carry (ADC) hardware
instructions to propagate the carries from one limb to the
next. This introduces dependencies between the individual
instructions, which can reduce CPU utilization depending on
the number of available adders. Modern Intel CPUs allow
for two independent addition chains through the use of two
different ADC instructions (see App. A.1). If exploited, this
can increase performance by increasing CPU utilization.

Modular Reduction. Efficiently implementing modular re-
duction is dictated by the chosen prime field size q. Let
Rq(x) be the function that maps x to its remainder modulo
q. Then, for any Crandall prime q = 2π − θ and x ∈ Zq we
have by the usual laws of remainder arithmetic that

Rq(x · (2π)n) = Rq(x · θn), (1)

which for Mersenne primes simplifies to

Rq(x · (2π)n) = x. (2)

Representing a number z ∈ Z in base 2π allows reducing z
modulo q via usually k multiplications and additions,3 where
k is the number of digits in the base 2π representation of z.

Similar approaches can be used for Solinas primes q =
2m·d −

∑d−1
i=0 ci2

i·m, using the more general form of the
above equation.

Rq(x · (2m·d)n) = Rq

(
x ·

(
d−1∑
i=0

ci2
i·m

)n)
(3)

As observed in [23], these computations can be made using
linear shift registers in practice.

To fully achieve constant-time modular reduction, the
overall arithmetic must be designed to ensure that n is
bounded by some fixed number (often 2). In the last step,
we arrive at a number in the range [0, 2q − 1]. To compute
the final reduction, we can subtract q and check if the result
is negative.

3. Since addition and multiplication can overflow, this algorithm has to
be applied iteratively.

Multiplication. We have several different algorithms to
choose from when implementing finite field multiplication.
In App. C, we evaluate Karatsuba multiplication. We show
there it outperforms Schoolbook multiplication in terms of
total number of simple operations (i.e. integer multiplica-
tions, additions, and subtractions) only if we have more
than 12 limbs.4 Theoretically, this point can be lower if
we weight multiplications higher than additions, e.g. if we
assume the cost of a multiplication to be, on average, 1.5
times that of an addition, Karatsuba is better as soon as
we have more than 7 limbs.5 However, during prelimi-
nary testing, we observed that Karatsuba’s algorithm does
not yield performance benefits for the typical field sizes
used in polynomial hash functions. We, therefore, omit a
detailed discussion of asymptotically superior algorithms
here and focus only on methods directly based on classical
Schoolbook multiplication. An overview of the available
subquadratic methods can be found in [24].

We can multiply two numbers a, b as follows

a · b =
2ℓ−1∑
i=0

∑
ℓ:ℓ:j+k=i

ajbkB
i. (4)

Given the quadratic complexity of this algorithm, we imme-
diately see the number of limbs as being the most important
factor for optimization.

To our knowledge, this naive version of Schoolbook
multiplication is usually not implemented. Instead, an in-
terleaved version of modular multiplication is used. Im-
plementers usually use properties of the selected prime to
keep the result number bounded and not require double the
number of limbs. In the case of a prime field Zq with a
Crandall Prime q = 2π − θ, we can use a simplified form
of eq. (1) for x ∈ Zq:

x · 2π = x · θ mod (2π − θ) (5)

to reduce the number of resulting limbs. Let B = 2λ and
λ′ = π − (ℓ− 1)λ > 0. Isolating the powers larger than 2π

we can then rewrite eq. (4) using eq. (5) to obtain:

a · b =
ℓ−1∑
i=0

(
2λ
)i
ci mod 2π − θ,

with ci =
∑

ℓ:ℓ:j+k=i

ajbk +
∑

ℓ:ℓ:j+k=i+ℓ

ajbk · 2λ−λ
′
· θ (6)

While this does not reduce the number of operations, it
allows us to store intermediate results in ℓ 2ω-bit integers
instead of requiring 2ℓ such integers. During implementa-
tion, eq. (6) can be optimized further by factoring out terms
independent of the summation indices. Furthermore, for
simple polynomials, bk is usually a limb value obtained from
the key and thus constant throughout the hash computation,
allowing the precomputation of partial products within the
sum. From this, we can also derive some preliminary bounds
for our limb choices relative to our prime. For each 2ω-bit

4. c = 0, A = M gives k ≈ 3.59198 in eq. (8) in App. C.
5. c = 0, 1.5A = M gives k ≈ 2.82657 in eq. (8) in App. C.



Limb Bound

ℓ
(ℓ− 1) · (2λ − 1)2

+2 · (2λ+λ′ − 2λ − 2λ
′
+ 1)

ℓ− 1
(ℓ− 1) · (2λ − 1)2

+(22λ
′ − 2λ

′+1 + 1) · θ · 2λ−λ′

0 < i ≤ ℓ− 2

i · (2λ − 1)2

+(2 · (2λ+λ′ − 2λ − 2λ
′
+ 1)

+(ℓ− i− 2) · (2λ − 1)2) · θ · 2λ−λ′

TABLE 2: Maximum size of schoolbook multiplication limb
results.

1 : while ∃i ∈ {0, ℓ− 2}.ai ≥ 2λ ∨ aℓ−1 ≥ 2λ
′
:

2 : for i in {0, ℓ− 2} :

3 : ai+1 = ai+1 +
⌊
ai/2

λ
⌋

4 : ai = ai mod 2λ

5 : a0 = a0 +
⌊
aℓ−1/2

λ′⌋
∗ θ

6 : aℓ−1 = aℓ−1 mod 2λ
′

7 : endwhile

Figure 1: Carry propagation for Crandall prime fields

integer we use to store the results, we must add ℓ numbers
with up to 2λ bits. We then have to make sure that we choose
λ in such a way as to have enough space for the log2 (ℓ− 1)
potential carry bits; Tab. 2 shows more precise bounds on
maximum limb sizes after Schoolbook multiplication.

For Mersenne and Solinas primes, we can similarly
use eqs. (2) and (3) to directly partially reduce during
multiplication. Of these three types of primes, Mersenne are
the ones allowing for the fastest multiplication, and Solinas
primes require the most additional operations.

In the full version, we also consider an asymmetric ver-
sion of Schoolbook multiplication as well as optimizations
for squaring.

3.2.3. Limb Realignment and Carry Propagation.

Delayed Carry Propagation. While a saturated representa-
tion requires the usage of techniques to immediately prop-
agate carries between limbs, an unsaturated representation
allows for carry bits to accumulate in the “unused” bits.
For a Crandall prime field, this can be achieved using the
algorithm in Fig. 1.

Proposition 3. Consider a number a represented in an
unsaturated, unbalanced limb representation, with ∀0 ≤ i <
ℓ − 1, λi = λ and λℓ−1 = λ′. Let π =

∑ℓ−1
i=0 λi. We then

have:
a < 2(ℓ−1)λ+ω+1 = 2π−λ

′+ω+1.

The proof of this proposition can be found in the full
version.

By Prop. 3 it follows that for any π-bit Crandall
prime with sufficiently small θ and with π > 2ω we

have to perform at most one modular reduction during
carry propagation. Furthermore, for δ = ⌈log2 θ⌉ and
j = min

{
k < ℓ |

∑k
i=0 λi > ω − λ′ + δ + 1

}
, we can rep-

resent a with at most 1 carry bit in the j-th limb. This gives
rise to a variant of the algorithm in Fig. 1 that does only
one full iteration of the while loop. In the second iteration of
the while loop it terminates after executing line 4 in the j-
th iteration of the for loop. In an unsaturated representation,
this delayed carry thus allows for 2ω−λ−1 − 2 additions
of partially reduced and carry propagated numbers before
another carry propagation has to be performed.

Limb Realignment. Due to the nature of CPU multipli-
cation instructions, simple application of the multiplication
approaches discussed above yields intermediate results of
the form:

∑ℓ−1
i=0

(
2λi
)i
ai, with ai ∈ Z22λi . Limb realign-

ment essentially boils down to splitting ai into ai,u ∈ Z2λi

and ai,l ∈ Z2λi , so that ai = ai,u · 2λi + ai,l. As with
carry propagation, we only discuss the case where the
representation is only unbalanced in the most significant
limb, i.e. ∀0 ≤ i < ℓ − 1.λi = λ and λℓ−1 = λ′. We
then add up corresponding ai,u and ai,l, i.e. realign based
on the following equation:

ℓ−1∑
i=0

2λiai = a0,l + aℓ−1,u · 2λℓ +
ℓ−1∑
i=1

2λi(ai,l + ai−1,u).

In the final step, we now have to perform a simple modular
operation to reduce aℓ−1,u · (2λ)ℓ.

This approach can be implemented with the same algo-
rithm as for carry propagation. The major difference in the
implementation between carry propagation and limb realign-
ment is the types of the involved variables: in carry prop-
agation all our variables are single-word integers, while in
limb realignment we start with double-word sized integers.
As with carry propagation, an unsaturated representation
allows to delay limb realignment. However, since the cost
of multiplication grows quadratically with the number of
limbs, one usually uses the largest native integer size for
the processor architecture to store each limb. This means
double limbs have to be represented by two integers. Thus,
the cost of multiplication of double-size limb numbers is
four times that of single-size limb integers. Consequently,
the cost of multiplication increases by a factor of 4 with
each multiplication without limb realignment. This leads to
three different approaches to schedule limb realignment:
Immediate Limb Realignment. As the name implies imme-
diate realignment, performs realignment immediately after a
double word size number is created, e.g. individual products
appearing in the summation of field multiplication. This is
excessive: it has no benefits for a saturated limb represen-
tation as carries still have to be propagated immediately;
similarly, in an unsaturated representation, it would be more
beneficial to simply let the carries accumulate on the larger
limbs and then perform limb realignment and carry propa-
gation. However, this is not always possible as this requires
at least ⌈log2 ℓ⌉ free bits to store carries. If the chosen



Hpoly(r, (M1, · · · ,Mn))

1 : T ←M1

2 : for i = 2 to n do

3 : T ← T · r +Mi

4 : return T

Figure 2: Sequential Horner’s algorithm of Hpoly.

representation does not allow this, limbs must be realigned
immediately.
Partially-Delayed Limb Realignment. By partially-delayed
limb realignment, we mean performing limb realignment
as the last operation of a field multiplication. That is,
during the field multiplication, we temporarily work with
double-sized limbs while adding up intermediate products.
As discussed above, this requires choosing a representa-
tion that allows for at least ⌈log2 ℓ⌉ free bits per limb in
this double-size representation. More precisely we require
∀0 ≤ i < ℓ. ⌈log2 ℓ⌉ < 2ω − λi. This is the approach that
implementers usually choose.
Fully-Delayed Limb Realignment. If we chose a representa-
tion that allows for significantly more carries than is required
during a single multiplication, the question that arises is why
not to delay realignment as much as possible? Depending on
the chosen polynomial and the evaluation strategy used, this
allows to sum up the results of several field multiplications
and only perform limb realignment and carry propagation
at the end. Since limb realignment is an operation that is
not easily pipelined, this reduction of limb realignments can
have significant performance impacts. To our knowledge,
this is usually not done in practice when working with prime
fields. However, it is sometimes done with binary fields, and
its potential benefits for prime fields have been pointed out
in [20].

3.2.4. Classical Polynomial Evaluation Strategy. Vari-
ous strategies exist for evaluating the classical polynomial
Hpoly. The naive method consists of calculating powers of
the key and then multiplying each message block by one
of these powers. For a message of n blocks, it requires
roughly 2n field multiplications and allows fully-delayed
carry (cf. Sec. 3.2.3). If the key powers are precomputed, the
remaining multiplications can be done in parallel. However,
it is possible to use fewer field multiplications than this.
Horner’s algorithm, described in Fig. 2, is an online but se-
quential algorithm that requires only n multiplications. Due
to the structure of the polynomial Hpoly, it is possible to par-
allelize any evaluation algorithm of Hpoly into a B-branch
parallel algorithm (cf. Fig. 3) at the cost of precomputing
the first B powers of the key. Thus, Horner’s algorithm
can be parallelized by using it as the subprocedure to the
algorithm described in Fig. 3. However, neither Horner nor
parallel Horner allow for longer delayed carry propagation.
Another structural characteristic of Hpoly is the possibility
to abstract it as a 2-level polynomial as described in Fig. 4
(and introduced in [25], [26]). The algorithm processes

Hpoly(r, (M1, · · · ,Mn))

1 : for i = 1 to B do

2 : Ti−1 ← Hpoly(r
B , (Mi,Mi+B ,Mi+2B , · · · ))

3 : for i = 1 to B do

4 : Tn+i mod B ← Tn+i mod B · rB−i

5 : T ← T0 + T1 + · · ·+ TB−1

6 : return T

Figure 3: B-branch parallel evaluation algorithm of Hpoly.

Hpoly(r, (M1, · · · ,Mn))

1 : nB ← n mod B, n′ ← n− nB

B

2 : T ← H̃poly(r
B , (Hpoly(r, (M1, · · · ,MB)), · · · ,

3 : Hpoly(r, (M(n′−1)·B+1, · · · ,Mn′·B))))

4 : T ← Hpoly(r, (T,Mn−nB+1, · · · ,Mn))

5 : return T

Figure 4: 2-level evaluation of Hpoly grouped by B-blocks.

the message by groups of B blocks through a lower-level
polynomial Hpoly. Then, the concatenation of their outputs
is fed as input to a higher-level polynomial H̃poly keyed with
the initial key to the power B. Any evaluation algorithm
of Hpoly can be used for Hpoly and H̃poly. However, a
considered choice allows the 2-level polynomial to benefit
from properties of the lower and/or higher level polynomial.
Typically the higher-level polynomial H̃poly uses Horner or
parallel Horner so that the 2-level construction inherits their
online or parallel characteristics. The lower-level polynomial
H̃poly almost exclusively uses the naive evaluation algorithm
to employ its delayed-carry strategies while only needing
to precompute the first B powers of the key (these can
be reused across each group of B blocks). This 2-level
construction and parallel Horner both require n + B field
multiplications.

When evaluating the classical polynomial over a Cran-
dall prime field, a characteristic of Horner, Parallel Horner
or the 2-level implementation choice we just described is
the possibility to optimize modular multiplication by pre-
computing some of the limb multiplications corresponding
to modular reduction (cf. Sec. 3.2.2). Still, only the last one
allows for longer delayed carry propagation. Both parallel
Horner and the 2-level implementation allow for some level
of parallelization of field multiplications that depend on the
value B. This notably explains why they perform better than
Horner in the benchmarks presented later, as they allow to
fill the CPU pipeline, even though they require more field
multiplications.

3.3. Key and Message Format Restriction

Field multiplication of two elements can be sped up by
clamping, i.e. forcing a predefined set of bits in one of the



operands to be zero. Technically, this is a design choice, but
it is motivated by a specific implementation strategy and its
benefits are limited to this implementation strategy. When
the operand is the key, this reduces the keyspace, and when
it is a message block, it reduces the block size. The key in
Poly1305 was clamped to facilitate efficient implementations
on floating-point units [3]. While the use of floating-point
units is no longer relevant today, this kind of format restric-
tion can still yield speedups. Specifically, it can limit the
size of intermediate limb products so as to allow delayed
carry propagation in a saturated representation. The format-
restricted operand must be such that it can be represented
using a reduced number of (saturated) limbs, leading to
fewer arithmetic operations during field multiplication. To
our knowledge, this was first applied to Poly1305 in the
monocypher library [27] and explained in [28]. We give an
overview of this technique generalized for Zq when q is a
π-bit Crandall prime.

A saturated representation of field elements requires ℓ =⌈
π
ω

⌉
limbs. To ensure proper cache alignment, we further

chose the formatted operand to be ρ =
⌊
π
ω

⌋
· ω bits in size,

meaning it uses either ℓ−1 or in the case that the prime size
is multiple of the word size, ℓ limbs. Therefore, we have to
perform at most ℓ− 1 additions of double-word sized limbs
(cf. Sec. 3.2.2), requiring log2 ℓ bits of space to delay the
carry. Thus, we can delay the carry only if the ⌈log2 ℓ⌉ most
significant bits of each limb of the formatted operand are set
to zero. In the case where our word size does divide the size
of the prime, meaning we are in a balanced representation,
this number of zero bits is sufficient for delayed carry. This
leads to a reduction in the effective formatted operand (key
or message) size by ℓ · ⌈log2 ℓ⌉ = π

ω · ⌈log2 π − log2 ω⌉
bits. If the word size does not divide the prime size, i.e. we
are in an unbalanced representation, applying eq. (6) leads
to additional space requirements of ω − t bits per operand
limb, where t = π−ρ. Thus it requires the ⌈log2 ℓ+ ω − t⌉
most significant bits of each operand limb to be zero. This
can lead to significant key space or block size reductions
when t is small. Instead, we can use the following equation
to perform partial modular reduction:

x · 2ρ = x · 2−t · 2π = x · 2−tθ mod q. (7)

If the t least-significant bits of x are zero, then division
by 2t can be done using a right shift by t bits. This
motivates setting the ⌈log2 ℓ⌉ most-significant and the t
least-significant bits in each limb of the formatted operand to
zero, resulting in a clamping strategy with a smaller security
or performance loss than simply applying eq. (6) as in the
balanced case.

4. Benchmarking Framework

To assist our exploration of the design space we designed
and implemented a framework6 for rapidly testing different

6. The framework is continuously being improved. The most recent
version is available here: https://github.com/jangilcher/polynomial h
ashing framework

Configuration Parser

Arithmetic Generator

Encoding Polynomial Arithmetic
Hash Function Benchmark

C Compiler

Hash Function Library Benchmark Executable

Automated Testing Graph Generation

Figure 5: Schematic overview of our framework

designs and implementations. Our framework follows a
modular design reflecting our taxonomy in Sec. 3, with some
violations of said modularity where the performance impact
was too large to reflect real-world performance. We define
a simple grammar for specifying: (a) key size, (b) output
size, (c) block size, (d) prime field, (e) limb arrangement, (f)
field-arithmetic algorithms, (g) target CPU and instruction
set, (h) encoding for key, message, and hash output, (i)
single polynomial or a concatenation, and (j) the polynomial
evaluation strategy.

A schematic overview of how our framework is struc-
tured is shown in Fig. 5. After Parsing the configuration it
selects the appropriate C implementations for the polyno-
mial and encoding functions, automatically generates the
arithmetic in C and compiles and links these against a
simple hash interface as well as a benchmarking suite. As a
result we generate both a small library containing our hash
function and a benchmarking executable. The arithmetic
components of the library are then automatically tested on
random data, and the benchmark is executed. In its final step
it automatically creates individual and aggregate graphs for
each configuration file. We emphasize that at this stage our
framework should not be used to assemble production code.

Benchmarking Methodology. We measure the number of
cycles, using the x86 instruction rdtscp, required to eval-
uate the hash function on a random message and key. For
each data point we measure the total number of cycles
when evaluating the hash function 1024 times in succession
and then divide the total by 1024. Each hash iteration uses
distinct random data that is loaded in the same memory
location. This procedure is repeated 25 times to compute
the average and standard deviation for that sample which we
use in our plots. We repeat these measurements for varying
message sizes at one-byte increments up to a maximum of
8000 bytes. Note that the framework does not automatically
CPU disable dynamic frequency scaling.

Data-to-Field Encoding. Our original intention was to
handle data-to-field encoding via an inline function call so
as to support all possible types of encoding in a modular
fashion. Unfortunately this degraded performance substan-
tially, most notably when messages are not consumed in
a cache-friendly manner. This is because to truly support
arbitrary mappings the function call requires an additional
copy operation on the message blocks.

https://github.com/jangilcher/polynomial_hashing_framework
https://github.com/jangilcher/polynomial_hashing_framework


Name Prime Message Block, Security
Key & Tag Size Level

Poly1305 2130 − 5 16 Byte 103
Poly2663 2266 − 3 32 Byte 245
Poly1743 2174 − 3 21 Byte 161
Poly1503 2150 − 3 18 Byte 137
Poly1223 2122 − 3 15 Byte 117
Poly1163 2116 − 3 14 Byte 107

TABLE 3: Parameters of Poly1305 and our designs.

To circumvent this extra copy operation, we restricted
ourselves to simple “inline” transformations and integrated
them into the packing and unpacking operations of the
field arithmetic library (which perform the transformation
from and to the chosen field element representation). This
is justifiable because a realistic and efficient design will
naturally restrict itself to some encoding of this type which
only adds one or two instructions. In our framework this is
limited to the following two options:
• prepending or appending a byte to each block,
• applying a mask to each limb.

Limitations. There are a number of avenues for expand-
ing our framework’s scope in future work. It currently
lacks support for automatically implementing field arith-
metic as vector operations exploiting the Intel AVX or the
Arm Neon instruction set extensions. The currently sup-
ported multiplication algorithms are restricted to schoolbook
and schoolbook with precomputation of the partial reduction
in an unsaturated representation. As previously discussed,
we omitted Karatsuba and other sub-quadratic algorithms.
The framework uses the bounds displayed in Tab. 2 to
automatically adapt the carry propagation so as to avoid
integer overflow. To assist with this, a specially instrumented
version of the code can be used to dynamically check for
integer overflows during testing.

5. New Hash Function Designs

Informed by our survey we propose five new polynomial
hash designs that serve as alternatives to Poly1305. Because
the performance gains from key clamping only apply to
niche use cases, our proposals do not rely on this approach.
Our designs target three main categories that offer different
tradeoffs between performance and security. The primary
parameters of our designs are summarized in Tab. 3.

Very High Security Designs. We present Poly2663, a
design that achieves extremely high security. It is intended as
an alternative to the approach suggested in [5], which con-
catenates two independent invocations to Poly1305, resulting
in a similarly high security level. Instead of concatenating
two independent instances of Poly1305, we double the field
size using the Crandall prime q0 = 2266 − 3. By eschewing
key clamping, it avoids the 44-bit security loss arising from
the double application of Poly1305 in the approach of [5]
and an additional security loss of log2(n) due to the use of
concatenation. At the same time Poly2663 requires less limb

operations per message block, thereby resulting in better
performance and roughly 25% more bits of security.

Higher Security at Poly1305 Performance. Here, we
strive for designs which achieve higher security at a similar
performance level to Poly1305. We achieve this by carefully
selecting Crandall primes larger than q = 2130−5 which still
require the same number of limbs as Poly1305. This results
in a better utilization of these limbs. To increase security
further, we eschew key clamping. The primes we propose
are q1 = 2174 − 3 and q2 = 2150 − 3 and thus we call
the corresponding hash functions Poly1743 and Poly1503.
Both of these primes can be represented using a balanced,
unsaturated representation on both 32 and 64-bit systems.
The primary difference between these two proposals is
that Poly1503 can be implemented using exactly the same
number of limbs as Poly1305 on both 32-bit and 64-bit
systems, whereas Poly1743 uses the same number of limbs
on 64-bit systems, but requires an additional limb on 32 bit
systems. Thus Poly1743 sacrifices 32-bit performance for an
additional 24 bits of security. Due to the larger field sizes,
messages are split into fewer blocks than in Poly1305, and
as a result they even outperform Poly1305 despite using the
same number of limbs.

High Performance at Poly1305 Security. Here we strive
for designs that improve performance while retaining a
comparable security level to Poly1305. Our strategy here is
to reduce the prime size so as to reduce the number of limbs,
and then compensate for the resulting security loss by forgo-
ing key clamping. Our favoured primes are q3 = 2122−3 and
q2 = 2116− 3, yielding Poly1223 and Poly1163. Analogous
to the prior case, Poly1223 achieves maximum security and
peak performance on 64-bit processors by sacrificing per-
formance on 32-bit processors, whereas Poly1163 achieves
slightly lower security but excellent performance on both 32-
bit and 64-bit processors. Poly1163 can easily be represented
using a balanced, unsaturated representation. For Poly1223
a balanced representation can only be reasonably achieved
on 64-bit processors.

5.1. Implementation and Evaluation

We used our framework to implement and benchmark
all of our designs as well as Poly1305. For each design, we
have at least three variants: a classical Horner’s rule imple-
mentation, a parallel Horner’s rule implementation, and a 2-
level polynomial evaluation that makes use of fully-delayed
realignment. For the latter two, we ran the experiment with
different hyperparameters, i.e. different numbers of parallel
branches for parallel Horner and different numbers of blocks
processed by the inner polynomial in the 2-level polynomial.
For Poly1305, Poly1503, and Poly1743, we also added a
configuration with custom field arithmetic that utilizes key
clamping as outlined in Secs. 3.1.2 and 3.3. This is not yet
automatically generated by our framework. The key clamp-
ing scheme used is the same for all three. However, it is not
the one originally used in Poly1305. Instead, we only set



bits 60-65 and 123-127 to zero, reducing the security level
by 10 bits. Unless otherwise specified, all implementations
use a partially-delayed realignment strategy. All experiments
were run on a 4 GHz Intel Xeon Gold 6258R configured
to run in 64-bit mode with Turbo Boost enabled and the
compiler used was gcc-9.4.0.

6. Benchmarking Results and Conclusions

Our benchmarks are summarized in Fig. 8 in the ap-
pendix. It shows the processing rate in cycles per byte
for the implementations generated by our framework. We
observe that our Poly1305 implementations are competitive
with the state-of-the-art implementations reported in [20].
Overall we find that these benchmarks validate our intuition
to a good degree, and in particular, our proposed designs
achieve the expected gains. Notably, the best implementa-
tions of Poly1223 and Poly1163 perform twice as fast as
the best implementation of Poly1305 on a 64-bit processor.
Alternatively, Poly1743 and Poly1503 increase the security
by 34 bits and 58 bits respectively without compromising
on performance. For even higher security, Poly2663 or a
concatenation of Poly1223 are both far better options than a
concatenation of Poly1305 (as proposed in [5]), both being
twice as fast as the concatenation option. Indeed, we believe
that these gains are substantial enough to warrant replacing
Poly1305 in ChaCha20-Poly1305 with one of our designs.
Since they follow the same structure and provide the same
type of security, minimal surgery would be required.

Fig. 6 compares our fastest Poly1305 and Poly1163
versions to state-of-the-art libraries (with Turbo Boost en-
abled). We observe that our implementations are competitive
even with implementations that utilize specialized hardware
features like CLMUL and vectorized instructions. Specifically
for messages below 8KB in size, Poly1163 outperforms
OpenSSL’s AVX2 implementation of Poly1305 as well as
its GMAC implementation utilizing CLMUL, and also is
roughly equal to the performance of the Poly1305 AVX2
implementation in HACL*. Note, though that this is partially
caused by these library implementations converging very
slowly towards their performance limit and not reaching it
for the message sizes here. On the other hand, 8KB far
exceeds the typical size of network packets. We conclude
that a well-crafted AVX2 implementation of Poly1163 is
likely to strongly outperform the existing state-of-the-art.

Unfortunately, due to space limitations we are only able
to include benchmarks for one processor type here, but we
will make more benchmarks available in the full version. In
future work, we plan to expand our scope to polynomials
over binary fields and hash functions that employ more
sophisticated polynomials, such as BRW. Finally adding
further features and functionality to our framework, such
as automatically proving the correctness of the code it
generates with respect to a mathematical specification, is
in and of itself an interesting research direction.

Figure 6: Comparison of our proposed designs with various
library implementations of polynomial hash functions.
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Figure 7: Simplified overview of a modern CPU core.

Appendix A.
Extended Background

A.1. Relevant Processor Characteristics

In the following, we give a brief overview of modern
processor design as it affects the performance of polynomial
hash functions. Implementers should independently familiar-
ize themselves with the details of their target architectures,
e.g. using the available documentation from CPU manufac-
turers [30], [31], [32]. Modern processors don’t execute ev-
ery instruction sequentially. Instead each processor core can
independently reorder incoming instructions and schedule
them to be executed on different pipelines. Figure 7 shows
a very simplified overview of this design.

The frontend fetches the program code from memory
and decodes the instructions into a set of micro instruc-
tions (µops). They are then sent to the execution engine,
which eventually schedules them on the different execution
units. The execution units of the processor (e.g. its ALU)
are usually grouped into different sets which are available
via different execution ports, which execute independently
from each other. Overall this results in deep pipelines, and
peak throughput is only achieved when these pipelines are
saturated. Thus, for peak performance care has to be taken to
write code that allows the processor to use this. For example
an Intel Skylake processor has 8 execution ports, 4 of which
contain an integer ALU.

Special Registers and Instructions. Both the Armv8-A
and the x86-64 architectures utilize a special CPU Flags
register. Among others these contain status flags,7 which are
set and cleared as result of executing arithmetic instructions
to indicate some additional result of the last instruction that
has been executed. Relevant for this work are the Carry flag,
which is set, if and only if the result of an unsigned-integer
arithmetic operation results in an overflow, and the Overflow
flag, which is set, if and only if the result of a signed-integer
arithmetic operation results in an overflow.

In cryptographic implementations their most important
use is in special arithmetic instructions. Most notably the
add-with-carry (ADC) instruction, which adds the value of

7. This is according to Intel and AMD naming conventions. Nomencla-
ture and implementation details differ on Arm platforms. For simplicity we
will use Intel’s nomenclature.
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the carry flag as an additional input to its two operands.
This allows implementing integer arithmetic for arbitrary
large integers. Modern Intel processors also come with an
additional pair of add-with-carry instructions, ADCX and
ADOX, which use the carry or overflow flag, respectively, as
an additional input to the addition (similar to ADC), but do
not set the overflow or carry flag, respectively, (unlike ADC
which sets both the carry and overflow flag). Use of these
two instructions allows for two simultaneous carry chains.

Appendix B.
Transforming Polynomial Hash Functions

In this section, we give a brief description of the con-
catenation and composition transformations and how they
affect security and efficiency. In the full version, we also
give efficient transformations for the union and product of
domains and a more in-depth analysis of all them.
Concatenation. Concatenating polynomial universal hash
functions can be done for two main reasons: increased se-
curity [33, Proposition 3] or domain extension [7, Theorem
5.4]. In both cases, the two hash functions concatenated can
be evaluated in parallel, but the tag space of the construction
is increased. When parallel evaluation of the two polynomi-
als is not possible, this improved security or domain increase
is obtained at the cost of efficiency, as we also need to
evaluate a second polynomial hash function.

The concatenation of two polynomial hash functions
over two small fields is often less secure than using a single
polynomial universal hash function over a bigger field (of
size the sum of the two small fields) [5, Theorem 7.4]. Thus,
concatenation is only useful when the construction is more
efficient. For example, concatenating two polynomial hash
functions over a smaller field with a good ratio of speed
over field size would result in faster evaluation than a single
polynomial over a bigger field (of size twice the size of
the small field) with a less good ratio. While concatenation
allows parallel evaluation of the hash functions, it is also
possible to evaluate a single polynomial in parallel, as in the
case of the classical polynomial (cf. Sec. 3.2.4). Yet, with
the concatenation construction, implementing parallelization
(for example, with AVX) would be easier and without any
overhead cost.
Composition. The composition of polynomial hash functions
can be considered for the same reasons as composition of
two general hash functions (cf. Sec. 2.2). Yet, composing
general hash functions can only be done with two indepen-
dently sampled hash functions. As stated in the following
theorem, in the case of polynomial hash functions over the
same field, the same key can be reused by both polynomials
at the cost of a slightly stronger assumption. The theorem
is an example of the application of our new definition of
univariate polynomial universal hash, i.e. a universal hash
satisfying Thm. 2. The proof of the theorem which can be
found in the full version, uses the fact that the composition
of injective functions is injective. It helps in building poly-
nomial hash functions with additional properties without

needing another key. This type of composition is implicitly
used by some multi-level and single key polynomial hash
functions such as the ones in [18] and [20].

Theorem 3 (Composition of Polynomial Hash).
Consider the family of keyed hash functions
G : Fq × (M ×

∏n
i=1Mi) → Fq defined as follows.

For any r ∈ Fq and (M,M1, · · · ,Mn) ∈ M×
∏n

i=1Mi,
G(r, (M,M1, · · ·,Mn))=H(r, (M,P 1

x (M1), · · ·, Pn
x (Mn)))

where, for i ∈ {1, 2, · · · , n}, P i
x : Mi → Fq[x] are

injective functions and the function H : Fq × (M ×
(Fq[x])

n)→ Fq is a polynomial hash function. Thus, there
exist an injective function Py :M× (Fq[x])

n → Fq[y] that
satisfies: for any r ∈ Fq and M,M ′ ∈ M × (Fq[x])

n,
H(r,M) = Pr(M) and Py(M)−Py(M

′) is of total degree
at most d(M,M ′). Then G is an ϵ-almost universal hash
function with ϵ((M,M1, · · ·,Mn), (M

′,M ′1, · · ·,M ′n)) =
d(M,M

′
)

q , where M=(M,P 1
x (M1), · · ·, Pn

x (Mn)) and M
′
=

(M ′, P 1
x (M

′
1), · · ·, Pn

x (M
′
n)). If in addition, the function

P y : M×(Fq[x])
n→Fq[y] defined by P y(M)=Py(M)−

P0(M) is injective, then G is also an ϵ-almost ∆-universal
hash function.

If the functions P i
r are all efficiently computable and H

is efficiently computable when given efficiently computable
polynomial hash functions as inputs, then G is also effi-
ciently computable. For simplicity, we state in the theorem
that Py needs to be injective over M× (Fq[x])

n. But the
theorem also holds when Py is only injective over the image
M ×

∏n
i=1 P

i
x(Mi). Also, for simplicity, the theorem is

stated only for tuples of fixed length n but it can be extended
to variable input lengths.

Appendix C.
Runtime Analysis of Karatsuba Multiplication

Let n = 2k be the number of basic integers that represent
a long integer (limbs). Let A be the cost of one basic integer
addition (or subtraction) and M be the cost of one basic
integer multiplication. Then schoolbook multiplication of
two n = 2k digit numbers has a cost of

TS(2
k) = 22kM +

(
22k − 1

)
A. (8)

The cost of for Karatsuba multiplication of two n = 2k

digit numbers, switching to the Schoolbook method once
the numbers reach 2c digits, is given by the recursion

TK(2k) =

{
3Tk

(
2k−1

)
+ 3 · 2kA if k > c

22cM +
(
22c − 1

)
A otherwise.

(9)

It follows that

TK(2k) =3k−c · 22c ·M+ (10)(
3k−c ·

(
22c − 1

)
+ 3k−c+1 · 2c+1 − 3 · 2k+1

)
·A.

For brevity we omit the simple induction proof.
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Figure 8: Benchmarking results for IntelXeon Gold 6258R with Turbo Boost up-to 4 GHz.



Appendix E.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

E.1. Summary

The paper investigates the impact of design and im-
plementation choices on the performance and security of
universal hash functions of a particular type that are con-
structed using univariate polynomial over a prime field with
modulus of a type that allows efficient modular reduction,
in short, that are variants of Poly1305. The authors use
the insights they share with the reader to propose several
variants of Poly1305 that either have better performance
or better security and present a benchmarking tool and
benchmarking results.

E.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

E.3. Reasons for Acceptance

1) The authors create a new benchmarking framework that
will allow future developers to test designs, optimiza-
tions, and how they interact.

2) This paper provides a valuable step forward in improv-
ing this central cryptographic operation, which requires
understanding the interactions between security goals,
the design space of mathematical functions under con-
sideration, the design space of algorithms to compute
those functions, and computer architecture.
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